Homework Set 2

Due: Jan 26, 2017 (IN Class)

1. What is the distance between the plane containing the points $(2,1,3),(2,2,4)$, and $(1,1,6)$, and the point $S=(1,1,1)$?
2. Where does the plane that contains the lines

$$
\vec{r}_{1}(t)=(3-t,-4+t, 4+2 t) \quad \text { and } \quad \vec{r}_{2}(t)=(3+t,-4+t, 4-t)
$$

intersect the x-axis?
3. Find the equation of the plane passing through the point $(1,3,2)$ that contains the line $\vec{r}(t)=(1+t,-1-2 t, 3+2 t)$.
4. Classify the type of the following conic sections (into ellipse, hyperbola, parabola, circle, or crossing lines):
(i) $x^{2}-3 y^{2}=1$
(ii) $2 x^{2}+8 y^{2}=5$
(iii) $y-x^{2}=0$
(iv) $x^{2}=y^{2}$
(v) $7 y^{2}=1-7 x^{2}$
5. Classify the type of the following nondegenerate quadrics (into ellipsoid, elliptical paraboloid, elliptical cone, hyperboloid of one sheet, hyperboloid of two sheets, or hyperbolic paraboloid)
(i) $x^{2}+3 y^{2}=z^{2}$
(ii) $2 y^{2}+4 x^{2}=5 z$
(iii) $x^{2}-y^{2}=z$
(iv) $x^{2}+y^{2}+2 z^{2}=2$
(v) $z^{2}=x^{2}+y^{2}$
(vi) $z^{2}=x^{2}+y^{2}+5$
(vii) $7 y^{2}+6 x^{2}=9+z^{2}$

