Homework Set 5

Due: Feb 23, 2017 (in Class)

1. Compute the following limits, or prove that they do not exist:
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}-y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x^{2}+y^{2}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{\sqrt{x^{2}+y^{2}}}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right) \sin \left(x^{2}+y^{2}\right)}{x^{4}+y^{4}}$
2. Compute the following partial derivatives of the function $f(x, y, z)=x^{2} y+\sin \left(z^{2}-x\right)$

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z}, \quad \frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial y^{2}}, \quad \frac{\partial^{2} f}{\partial z^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial x \partial z}, \quad \frac{\partial^{2} f}{\partial y \partial z}
$$

3. Let $z=f(x, y)$ be the function implicitly defined by $z^{3}+z=x^{2}+y^{2}$. Note that when $x=1$ and $y=1$, then $z=1$ as well. Compute $\frac{\partial f}{\partial x}(1,1)$.
4. Consider the parametrization $x(t)=e^{-t} \cos t, y(t)=e^{-t} \sin t$, of the logarithmic spiral. Let $f(x, y)=x+y$, and set $w(t)=f(x(t), y(t))$. Compute $w^{\prime}(t)$ using the Chain Rule for functions of 2 variables, and then verify you obtained the correct answer by substituting and using the explicit formula for $w(t)$.
5. An ice block, in the format of a brick (more precisely, a rectangular parallelepiped), is left under the sun to melt. At a given instant, the lengths of its three sides a, b, and c, are $1 \mathrm{~cm}, 2 \mathrm{~cm}$, and 3 cm . At that same time, you observe that each of the sides a, b, and c, is respectively shrinking at rates of $0.5 \mathrm{~cm} / \mathrm{sec}, 1 \mathrm{~cm} / \mathrm{sec}$, and $3 \mathrm{~cm} / \mathrm{sec}$. At what rates are the volume and the surface area of this ice block changing at that instant?
