## Homework Set 9

Due: Apr 6, 2017 (in class)

1. Compute the Jacobian of the following transformations:
a) Polar coordinates: $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, G(r, \theta)=(r \cos \theta, r \sin \theta)$
b) Cylindrical coordinates: $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, G(r, \theta, z)=(r \cos \theta, r \sin \theta, z)$
c) Spherical coordinates: $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, G(r, \theta, \phi)=(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$
d) $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, G(u, v, w)=(a u+1, b v-2, c w+3)$, where $a, b, c$ are constants.
e) $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, G(u, v)=\left(\frac{v-u}{2}, \frac{u+v}{2}\right)$
2. Find the volume of the solid $\Omega \subset \mathbb{R}^{3}$ bounded by the surface given in spherical coordinates by the equation $r=(\sin \phi)^{1 / 3}$.
3. Find the volume inside the cylinder $x^{2}+y^{2}=1$, below the plane $x+y+z=2$, above the $x y$-plane and in the first octant.
4. Let $\Omega$ be the triangle with vertices at the origin, $(2,0)$ and $(0,2)$. Use the change of variables $u=y-x, v=y+x$, to evaluate the integral $\iint_{D} e^{\frac{y-x}{y+x}} \mathrm{~d} A$
5. Compute the following line integrals of functions and vector fields:
a) $\int_{\gamma} f(x, y, z) \mathrm{d} s$, where $\gamma(t)=(t, 1-t, 0), 0 \leq t \leq 1$, and $f(x, y, z)=2 x+3 y$
b) $\int_{\gamma} f(x, y, z) \mathrm{d} s$, where $\gamma(t)=(\cos t, \sin t, 2 t), 0 \leq t \leq 2 \pi$, and $f(x, y, z)=\sqrt{x^{2}+y^{2}}$
c) $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$, where $\gamma(t)=\left(t^{2}, t,-t\right), 0 \leq t \leq 1$, and $\vec{F}(x, y, z)=(x y,-x, y z)$
d) $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$, where $\gamma(t)=(\sin t, \cos t, t), 0 \leq t \leq \pi$, and $\vec{F}(x, y, z)=\left(3 z, y^{2}, 4 x\right)$
