Practice Problems for the Final Exam

DUE: NEVER (BUT SOLUTIONS WILL BE DISCUSSED IN CLASS ON APR 25 AND 27)

1. What are the kernel ker T and image ImT of the following linear transformations?

a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $[T]_{can} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 2 \end{pmatrix}$
b) $T: \mathbb{R}^2 \to \mathbb{R}^4$, $[T]_{can} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ -3 & 0 \\ 3 & 2 \end{pmatrix}$
c) $T: \mathbb{R}^3 \to \mathbb{R}$, $T(x, y, z) = x + y + z$

- d) $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R}), \quad T(p(x)) = p'(x)$
- e) $T: \mathbb{R}^5 \to \mathbb{R}^5$, $T(x) = \text{proj}_v(x)$, where v = (1, 0, 1, 0, 1)
- f) $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R}), \quad T(A) = A^{\mathrm{t}}$
- g) $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R}), \quad T(A) = A + A^{t}$
- h) $T: M_{n \times n}(\mathbb{R}) \to \mathbb{R}, \quad T(A) = \langle A, I \rangle_{\mathrm{HS}}$, where $I \in M_{n \times n}(\mathbb{R})$ is the identity matrix and $\langle \cdot, \cdot \rangle_{\mathrm{HS}}$ is the Hilbert-Schmidt inner product
- 2. For the linear transformations $T: V \to W$ in Exercise 1 c) h), find bases \mathcal{B} and \mathcal{C} of the source and target vector spaces V and W and then write the matrix $[T]_{\mathcal{B},\mathcal{C}}$ that represents T with respect to these bases.
- 3. What is the dimension of the following real vector spaces? Use this to decide which are isomorphic to one another.

 $\mathcal{P}_4(\mathbb{R})$, Hom $(\mathbb{R}^3, \mathbb{R}^4)$, \mathbb{R}^5 , \mathbb{C} , $\mathcal{P}_{11}(\mathbb{R})$, $M_{3\times 3}(\mathbb{R})$, Hom $(\mathbb{R}^6, \mathbb{R}^2)$, $M_{2\times 3}(\mathbb{R})$, \mathbb{R}^{n^2} , $\{0\}$, \mathbb{C}^2 , and ker T, ImT for each of the T's in Exercise 1.

4. Consider the basis $\mathcal{B} = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ of \mathbb{R}^3 . Find the coordinates $[v]_{\mathcal{B}}$ of the following vectors with respect to this basis: v = (1, 2, 3), v = (0, 1, 0), v = (-2, 5, 6).

5. Let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$
. Answer the following without too many computations:

- a) What is the dimension of the image of A?
- b) What is the dimension of the kernel of A?
- c) What are the eigenvalues of A?

- d) What are the eigenvalues of $B := \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 5 \end{pmatrix}$? [HINT: B = A + 3I].
- 6. Diagonalize the following matrices A (i.e., find an invertible matrix P such that the matrix $D = PAP^{-1}$ is diagonal):

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, A = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{pmatrix}, A = \begin{pmatrix} -1 & 9 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

- 7. The first three matrices A above in Exercise 5 are symmetric, hence *orthogonally diag-onalizable* by the Spectral Theorem. (Check that the basis of eigenvectors you found is orthonormal). Which of these matrices are positive-definite, positive semi-definite, negative-definite and negative semi-definite?
- 8. Give an example of an $n \times n$ matrix A which is not diagonalizable over \mathbb{R} .
- 9. Suppose $T: \mathbb{R}^6 \to \mathbb{R}^4$ is a linear map represented by the matrix $A \in M_{4 \times 6}(\mathbb{R})$.
 - a) What are the possible values for the rank of A?
 - b) What are the possible values for the dimension of the kernel of A?
 - c) Suppose the rank of A is as large as possible. What is the dimension of ker $(A)^{\perp}$?
- 10. Let A be an $n \times k$ matrix.
 - a) If $\lambda_1 \neq 0$ is an eigenvalue of A^*A , show that it is also an eigenvalue of AA^* . [Note where you use $\lambda_1 \neq 0$].
 - b) If $\vec{v_1}$ and $\vec{v_2}$ are orthogonal eigenvectors of A^*A , let $\vec{u_1} = A\vec{v_1}$, and $\vec{u_2} = A\vec{v_2}$. Show that $\vec{u_1}$ and $\vec{u_2}$ are orthogonal.
- 11. An $n \times n$ matrix is called *nilpotent* if A^k equals the zero matrix for some positive integer k. (For instance, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent.)
 - a) If λ is an eigenvalue of a nilpotent matrix A, show that $\lambda = 0$. [HINT: start with the equation $A\vec{x} = \lambda \vec{x}$.]
 - b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [HINT: use Part a).]
 - c) Let A be the matrix that represents $T: \mathcal{P}_5 \to \mathcal{P}_5$ (polynomials of degree at most 5) given by differentiation: $T(p(x)) = \frac{\mathrm{d}p}{\mathrm{d}x}$. Without doing any computations, explain why A must be nilpotent.

- 12. Let A be a real matrix with the property that $\langle \vec{x}, A\vec{x} \rangle = 0$ for all real vectors \vec{x} .
 - a) If A is a symmetric matrix, show this implies that A = 0.
 - b) Give an example of a matrix $A \neq 0$ that satisfies $\langle \vec{x}, A\vec{x} \rangle = 0$ for all real vectors \vec{x} .
- 13. For certain polynomials $\mathbf{p}(t)$, $\mathbf{q}(t)$, and $\mathbf{r}(t)$, say we are given the following table of inner products:

$\langle \ , \ \rangle$	р	q	r
p	4	0	8
q	0	1	0
r	8	0	50

For example, $\langle \mathbf{q}, \mathbf{r} \rangle = \langle \mathbf{r}, \mathbf{q} \rangle = 0$. Let *E* be the span of **p** and **q**.

- a) Compute $\langle \mathbf{p}, \mathbf{q} + \mathbf{r} \rangle$.
- b) Compute $\|\mathbf{q} + \mathbf{r}\|$.
- c) Find the orthogonal projection $\operatorname{proj}_E \mathbf{r}$. [Express your solution as linear combinations of \mathbf{p} and \mathbf{q} .]
- d) Find an orthonormal basis of the span of **p**, **q**, and **r**. [Express your results as linear combinations of **p**, **q**, and **r**.]
- 14. Determine the type of the following conics (ellipse. parabola, hyperbola) and compute its principal axes. Give the formula of the curve in the coordinate system defined by the principal axes.
 - a) $6x^2 7xy + 8y^2 = 1$
 - b) $2x^2 + 6xy + 4y^2 = 1$
 - c) $6x^2 + 4xy + 3y^2 = 1$
- 15. Let $A : \mathbb{R}^k \to \mathbb{R}^n$ be a linear map. Show that $\dim(\ker A) \dim(\ker A^*) = k n$. In particular, for a square matrix, $\dim(\ker A) = \dim(\ker A^*)$.
- 16. Find a closed formula for the *n*th element a_n of each of the following recurrent sequences, and compute $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n}$.
 - a) $a_{n+2} = 4a_{n+1} a_n, a_0 = 0, a_1 = 1;$
 - b) $a_{n+2} = 4a_{n+1} a_n, a_0 = 2, a_1 = 3;$
 - c) $a_{n+2} = -a_{n+1} + a_n, a_0 = 0, a_1 = 1;$
 - d) $a_{n+2} = -a_{n+1} + a_n, a_0 = 2, a_1 = 3.$

- 17. Determine if the following statements are TRUE or FALSE. If the statement is TRUE, then supply a proof. If the statement is FALSE, then give a counter-example.
 - a) $||v||_1 \le ||v||_2$ for all $v \in \mathbb{R}^n$; recall that $||v||_1 := \sum_i |v_i|$ and $||v||_2 = \sqrt{\sum_i v_i^2}$
 - b) $||v||_2 \le ||v||_{\infty}$ for all $v \in \mathbb{R}^n$; recall that $||v||_{\infty} := \max_{1 \le i \le n} |v_i|$
 - c) If dim $V \neq$ dim W, then V and W are not isomorphic;
 - d) If $A \in M_{n \times n}(\mathbb{R})$ is orthogonal, then A is symmetric;
 - e) If $A \in M_{n \times n}(\mathbb{R})$ is orthogonal, then A is invertible;
 - f) If $A \in M_{n \times n}(\mathbb{R})$ is invertible, then A is diagonalizable;
 - g) If $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable, then A is invertible;
 - h) If $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable, then A is symmetric;
 - i) If $A \in M_{n \times n}(\mathbb{R})$ is symmetric, then A is invertible;
 - j) If $A \in M_{n \times n}(\mathbb{R})$ is symmetric, then A is diagonalizable;
 - k) If $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable, then A^k is diagonalizable for all $k \ge 1$;
 - 1) If $A \in M_{n \times n}(\mathbb{R})$ is such that ker $A = \{0\}$, then $\text{Im}A = \mathbb{R}^n$;
 - m) If $A \in M_{n \times n}(\mathbb{R})$ is such that ker $A \neq \{0\}$, then $\operatorname{Im} A \neq \mathbb{R}^n$;
 - n) If $A \in M_{n \times n}(\mathbb{R})$ is such that $\text{Im}A = \mathbb{R}^n$, then ker $A = \{0\}$;
 - o) If $A \in M_{n \times n}(\mathbb{R})$ is such that $A^2 = A$, then $\text{Spec}(A) \subset \{0, 1\}$;
 - p) If $A \in M_{n \times n}(\mathbb{R})$ is symmetric and $B \in M_{n \times n}(\mathbb{R})$ is skew-symmetric, then AB is skew-symmetric;
 - q) If $A \in M_{n \times n}(\mathbb{R})$ is skew-symmetric and n is odd, then det(A) = 0;
 - r) If $A, B \in M_{n \times n}(\mathbb{R})$ are similar, then they have the same trace $\operatorname{tr}(A) = \operatorname{tr}(B)$;
 - s) If $A, B \in M_{n \times n}(\mathbb{R})$ have the same determinant det(A) = det(B), then A and B are similar;
 - t) If $A \in M_{m \times n}(\mathbb{R})$ and the linear system Ax = b has infinitely many solutions, then $m < \operatorname{rank}(A) = n$.
 - u) If $A \in M_{m \times n}(\mathbb{R})$ and the linear system Ax = b has a unique solution, then m = n;
 - v) The set \mathcal{Q} of quadratic forms on \mathbb{R}^2 has a vector space structure and the subset of positive-definite quadratic forms is a linear subspace of \mathcal{Q} ;
 - w) The subset $\{p(x) \in \mathcal{P}_5(\mathbb{R}) : p(3) = 0\}$ is a linear subspace of $\mathcal{P}_5(\mathbb{R})$;
 - x) The unit sphere $\{x \in \mathbb{R}^2 : \eta(x, x) = 1\}$ in the Minkowski space $(\mathbb{R}^2, \eta), \eta(x, y) = -x_1y_1 + x_2y_2$ is an ellipse;
 - y) The unit sphere $\{x \in \mathbb{R}^2 : \langle Ax, x \rangle = 1\}$ in \mathbb{R}^2 with respect to the inner product $\langle A \cdot, \cdot \rangle$, where A is positive-definite, is an ellipse;
 - z) Every matrix $M \in M_{n \times n}(\mathbb{Z})$ is invertible mod 13.