Homework Set 5

DuE: Mar 2, 2016 (IN CLASS)

1. Bretscher Section 5.1: Exercises 32, 33
2. Bretscher Section 5.2: Exercises 32, 33, 36
3. Bretscher Section 5.3: Exercises 45, 46, 60, 61
4. Bretscher Section 5.5: Exercises 10, 17, 18, 30
5. Let $V=\left\{A \in M_{2 \times 2}(\mathbb{R}):\langle A, \mathrm{Id}\rangle_{H S}=0\right\}$ be the subspace of 2×2 real matrices that are orthogonal to the identity matrix with respect to the Hilbert-Schmidt inner product $\langle A, B\rangle_{H S}=\operatorname{tr}\left(A B^{t}\right)$. Find an orthonormal basis of $\left(V,\langle\cdot, \cdot\rangle_{H S}\right)$.
6. Given $A \in M_{n \times n}(\mathbb{R})$, recall that the operator norm of A is given by

$$
\|A\|=\max _{\|v\|=1}\|A v\|
$$

and its Hilbert-Schmidt norm is $\|A\|_{H S}=\sqrt{\langle A, A\rangle_{H S}}$. Prove that $\|A\| \leq\|A\|_{H S}$ for all diagonal matrices A. When does equality hold?
7. Challenge (2 bonus pts) Prove that $\|A\| \leq\|A\|_{H S}$ for any matrix $A \in M_{n \times n}(\mathbb{R})$, and also characterize when equality holds.

