Section 3.3 Derivative Formulas

Let \(f(x) \) and \(g(x) \) be differentiable functions and let \(k \) be a constant.

1. Constant function

\[
\begin{align*}
y &= k \\
y' &= 0
\end{align*}
\]

2. Linear function

\[
\begin{align*}
y &= mx + b \\
y' &= m
\end{align*}
\]

3. Constant Multiple Rule

\[
\begin{align*}
y &= kf(x) \\
y' &= kf'(x)
\end{align*}
\]
(from last class)

4. The Power Rule

\[
\begin{align*}
y &= x^n, \quad n \text{ any real number} \\
y' &= nx^{n-1}
\end{align*}
\]

\[
\begin{align*}
ex : y &= x^4 \\
y' &= 4x^3
\end{align*}
\]

5. The Sum Rule

\[
\begin{align*}
y &= f(x) + g(x) \\
y' &= f'(x) + g'(x)
\end{align*}
\]

6. The Difference Rule

\[
\begin{align*}
y &= f(x) - g(x) \\
y' &= f'(x) - g'(x)
\end{align*}
\]
(from last class)

\[
\begin{align*}
ex : y &= 4x - 7x^2 \\
y' &= 4 - 14x
\end{align*}
\]

7. The Product Rule

\[
\begin{align*}
y &= f(x)g(x) \\
y' &= f'(x)g(x) + f(x)g'(x)
\end{align*}
\]

\[
\begin{align*}
(\text{1st})' (\text{2nd}) + (\text{1st})(\text{2nd})'
\end{align*}
\]

\[
\begin{align*}
ex : \text{Let } f(x) = \sqrt{x} \cdot g(x), \quad g(4) = 8, \quad \text{and } g'(4) = 7. \text{ Find } f'(4).
\end{align*}
\]

\[
\begin{align*}
f'(x) &= \frac{1}{2} x^{-1/2} \cdot g(x) + \sqrt{x} g'(x) = \frac{1}{2\sqrt{x}} \cdot g(x) + \sqrt{x} g'(x) \\
f'(4) &= \frac{1}{2\sqrt{4}} \cdot g(4) + \sqrt{4} g'(4) = \frac{1}{4} \cdot 8 + 2 \cdot 7 = 16
\end{align*}
\]
8. The Quotient Rule

\[y = \frac{f(x)}{g(x)} \quad \Rightarrow \quad y' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \]

\[y' = \frac{(top')(bottom) - (top)(bottom')}{[bottom]^2} \]

ex: Let \(y = \frac{3x+1}{x^2 + 1} \). Find \(y'(1) \).

\[y'(x) = \frac{3(x^2+1) - (3x+1)(2x)}{(x^2+1)^2} \]

\[y'(1) = \frac{3(1+1) - (3+1)(2)}{(1+1)^2} = \frac{6 - 8}{4} = \frac{-2}{4} = -\frac{1}{2} \]

ex: Find the equation of the tangent line to \(y = \frac{3x+1}{x^2 + 1} \) at \((1, 2)\).

\[m = y'(1) \quad y = mx + b \quad x = 1, \ y = 2, \ m = -\frac{1}{2}, \ b = ? \]

\[y'(1) = -\frac{1}{2} \quad 2 = -\frac{1}{2}(1) + b \]

\[2 + \frac{1}{2} = b \quad \Rightarrow \ b = \frac{5}{2} \quad y = -\frac{1}{2}x + \frac{5}{2} \]

The normal line to a curve at a point \(P \) is the line through \(P \) that is perpendicular to the tangent line at \(P \).

ex: Find the equation of the normal line to \(y = \frac{3x+1}{x^2 + 1} \) at \((1, 2)\).

\[m_{\text{tangent}} = -\frac{1}{2} \quad y = mx + b \quad x = 1, \ y = 2, \ m = 2, \ b = ? \]

\[m_{\text{normal}} = 2 \quad 2 = 2(1) + b \quad \Rightarrow \ b = 0 \quad y = 2x \]
3.3 Derivative Formulas

Math 103 – Rimmer

ex: Let \(Q(x) = \frac{F(x)}{G(x)} \) where \(F \) and \(G \) are the functions whose graphs are shown. Find \(Q'(7) \).

\[
Q'(x) = \frac{F'(x)G(x) - F(x)G'(x)}{[G(x)]^2}
\]

\[
Q'(7) = \frac{F'(7)G(7) - F(7)G'(7)}{[G(7)]^2}
\]

\[
F(7) = 5 \quad F'(7) = \frac{1}{4}
\]

\[
G(7) = 1 \quad G'(7) = \frac{-2}{3}
\]

\[
Q'(7) = \frac{\frac{1}{4} (1) - 5 \left(\frac{-2}{3} \right)}{1} = \frac{\frac{10}{3} + \frac{3}{40}}{12} = \frac{43}{12}
\]

ex: Find the points on the curve \(y = 2x^3 + 3x^2 - 12x + 1 \) where the tangent line is horizontal.

\[
y = 2x^3 + 3x^2 - 12x + 1
\]

\[
y' = 6x^2 + 6x - 12 = 0
\]

set

\[
solve for x
\]

\[
6(x^2 + x - 2) = 0
\]

\[
6(x + 2)(x - 1) = 0
\]

either \(x + 2 = 0 \) or \(x - 1 = 0 \)

\[
x = -2 \quad \text{or} \quad x = 1
\]

\[
y(-2) = 2(-2)^3 + 3(-2)^2 - 12(-2) + 1 = 2(-8) + 3(4) + 24 + 1 = -16 + 12 + 25 = 1\]

\[
y(1) = 2(1) + 3(1) - 12(1) + 1 = 2 + 3 - 12 + 1 = -6
\]

\[
y(-2) = 21 \quad y(1) = -6
\]

\[
(-2, 21) \quad (1, -6)
\]
ex: Find the equation of the tangent lines to the curve

\[y = \frac{x-1}{x+1} \]

that are parallel to the line \(x - 2y = 2 \).

\[y' = \frac{1}{2} \]

cross multiply

\[x + 1 = 2 \Rightarrow x = 1 \]

\(y(1) = \frac{1-1}{1+1} = 0 \)

(1,0) pt. of tangency

\[m = \frac{1}{2} \]

\[y = mx + b \]

\[0 = \frac{1}{2} + b \Rightarrow b = -\frac{1}{2} \]

\[y = \frac{1}{2} x - \frac{1}{2} \]

\[x + 1 = -2 \Rightarrow x = -3 \]

\(y(-3) = \frac{-3-1}{-3+1} = \frac{3}{2} \)

\((-3,2) \) pt. of tangency

\[m = \frac{1}{2} \]

\[y = mx + b \]

\[2 = \frac{1}{2} (-3) + b \Rightarrow b = \frac{7}{2} \]

\[y = \frac{1}{2} x + \frac{7}{2} \]

\[\Rightarrow m_{tangent} = \frac{1}{2} \]

\[\Rightarrow x + 1 = \pm 2 \]

ex: Find the value of \(c \) such that the line \(y = \frac{3}{2} x + 6 \) is tangent to the curve \(y = c \sqrt{x} \).

We have 2 unknowns: \(c \) and the \(x \)-value of the point of tangency.

call this \(x_0 \)

At the point of tangency, the curve and the tangent line have the same \(y \)-value.

\[c \sqrt{x_0} = \frac{3}{2} x_0 + 6 \]

At the point of tangency, the slope of the tangent line is \(\frac{3}{2} \). \(\Rightarrow y'(x_0) = \frac{3}{2} \)

\[y' = c \frac{1}{2} x^{-1/2} \]

\[y' = c \frac{1}{2} \sqrt{x} \]

\[\Rightarrow \frac{c}{2 \sqrt{x_0}} = \frac{3}{2} \]

\[3 \sqrt{x_0} \sqrt{x_0} = \frac{3}{2} x_0 + 6 \]

\[3 x_0 - \frac{3}{2} x_0 = 6 \]

\[\Rightarrow \frac{3}{2} x_0 = 6 \]

\[x_0 = 4 \]

plug this into the other equation

\[\Rightarrow c = 3 \sqrt{4} \]

\[c = 6 \]
ex: Let
\[
 f(x) = \begin{cases}
 2 - x & \text{if } x \leq 1 \\
 x^2 - 2x + 2 & \text{if } x > 1
 \end{cases}
\]
Is \(f \) differentiable at 1? Sketch the graphs of \(f \) and \(f' \).

In order for \(f \) to be differentiable at 1 it must be continuous at 1.

Is \(f \) continuous at 1? If the answer is no, then we are done.

\[
 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (2 - x) = 1 \\
 \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 - 2x + 2) = 1
\]

Yes \(f \) continuous at 1.

In order for \(f \) to be differentiable, the slope of the tangent line from the left must equal the slope of the tangent line from the right.

\[
 f'(x) = \begin{cases}
 -1 & \text{if } x \leq 1 \\
 2x - 2 & \text{if } x > 1
 \end{cases}
\]

\[
 \lim_{x \to 1^-} f'(x) = -1 \\
 \lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} (2x - 2) = 0
\]

\(f \) is not differentiable at 1.