Section 2.2 Introduction To Limits

\[\lim_{x \to a} f(x) = L \]

"the limit as \(x \) approaches \(a \) (from either side)
of the function \(f(x) \) is \(L \)"

means as _________________, the
function values ______________

It actually doesn't matter

\[\lim_{x \to a^-} f(x) \]

\[\lim_{x \to a^+} f(x) \]

\[f(x) \text{ approaches} \]

\[y = x^2 - x + 2 \]

Example:

\[\lim_{x \to 1} \frac{x - 1}{x^2 - 1} \]

One-sided Limits

1. left-hand limit

\[\lim_{x \to a^-} f(x) = L \]

2. right-hand limit

\[\lim_{x \to a^+} f(x) = L \]

For a regular (2-sided) limit to exist, you must have:

\[\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L \]

Then you can say:

\[\lim_{x \to a} f(x) = L \]

\[\lim_{x \to a^-} g(x) = \lim_{x \to a^+} g(x) = \]

\[\lim_{x \to a} g(x) = \lim_{x \to a^+} g(x) = \]

\[\lim_{x \to a^-} g(x) = \lim_{x \to a^+} g(x) = \]

\[\lim_{x \to a^+} g(x) = \lim_{x \to a^+} g(x) = \]

\[\lim_{x \to a^-} g(x) = \lim_{x \to a^-} g(x) = \]

\[\lim_{x \to a} g(x) = \lim_{x \to a} g(x) = \]
2.2 Introduction to Limits

Math 103 – Rimmer

The value of the limit can become \(\lim_{x \to a} f(x) = \) _______.

\[f(x) = \]

the values of \(f(x) \) become _______ and _______ as \(x \) becomes closer and closer to \(a \).

the values of \(f(x) \) can be made arbitrarily large (as large as we please) by taking \(x \) _______.

The line \(x = a \) is then called a _______.

\[\lim_{x \to a} - \frac{\cos x}{x^2} = \]

Use a table of values to estimate the value of the limit.

\[\lim_{x \to 0} \frac{1 + x - e^x}{x^3} = \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td></td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td></td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td></td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>-0.01</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
What do you do when the denominator is 0?

e.x.1) \(\lim \frac{2-x}{x^2 + 3} \)

e.x.2) \(\lim \frac{x^3 + 13x^2 - 48x}{x^3 - 27} \)

Limit Laws

Let \(k \) and \(a \) be constants. Let \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \) (with \(L \) and \(M \) finite and \(M \neq 0 \))

1) \(\lim_{x \to a} [f(x) + g(x)] = L + M \)

2) \(\lim_{x \to a} [f(x) - g(x)] = L - M \)

3) \(\lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M \)

4) \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \) (with \(M \neq 0 \))

5) \(\lim_{x \to a} kf(x) = k \cdot L \)

6) \(\lim_{x \to a} c = c \)

7) \(\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L} \)

8) \(\lim_{x \to a} [f(x)]^n = [L]^n \)

The combination of the limit laws allows one to find the value of a limit by plugging in the value of \(a \):

\[
\lim_{x \to a} \frac{(3-x)\sqrt{1-x}}{x^2 + x - 2} = \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]

\[
= \frac{\lim_{x \to a} (3-x) \cdot \lim_{x \to a} \sqrt{1-x}}{\lim_{x \to a} (x^2 + x - 2)}
\]
2.2 Introduction to Limits

\[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]

ex.1) \[\lim_{x \to 3} \frac{\sqrt{x^2 + 3} - 2}{x - 1} \]

ex.2) \[\lim_{x \to 2} \frac{x - 2}{x - 7} \]

ex.3) \[\lim_{x \to 0} \frac{(x + h)^3 - 64}{h} \]

ex.4) \[\lim_{x \to 3} \frac{x^2 - 3}{x - 3} \]

No algebra technique to cancel the division by zero.

Resort back to the estimation techniques used earlier.

\[\lim_{x \to 3} \frac{x^2 - 3}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} \]

plug in \(x = 2.999 \)

\[\lim_{x \to 3} \frac{x - 3}{x - 3} = \lim_{x \to 3} \frac{x - 3}{0} \]

plug in \(x = 3.001 \)

\[\frac{2.999(2.999 - 3)}{2.999 - 3} = \frac{3.001(3.001 - 3)}{3.001 - 3} \]

\[-2.999 \]

\[-3.001 \]
2.2 Introduction to Limits

The Squeeze Theorem can be used to find the value of a very important limit.

If we let \(a \) be a constant, then a more general version of the limit above is

Finally a third fundamental limit based on the two limits above is

The three limits above can form the foundation for the proof of the fact that the derivative of \(\sin x \) is ________.

"Why should I care about the Squeeze Theorem?"

The Squeeze Theorem can be used to find the value of a very important limit.

If we let \(a \) be a constant, then a more general version of the limit above is

Finally a third fundamental limit based on the two limits above is

The three limits above can form the foundation for the proof of the fact that the derivative of \(\sin x \) is ________.