4.8 Anti-Derivatives

Before: Given a function find its derivative

Now: Given a function’s derivative, find the function

\[f'(x) = 8 \]
\[f(x) = \]

Reverse Power Rule

\[f'(x) = x^n \quad f'(x) = x^4 \quad f'(x) = 3x^2 + 2x^3 - 5 \]
\[f(x) = \quad f(x) = \quad f(x) = \]
for all ________
\[f(x) = \]

\[f'(x) = \sin x - 3\sec^2 x \Rightarrow f(x) = \]

\[f'(x) = \sqrt{x} + x^2 - \frac{1}{x^2} = \]
\[f(x) = \]
\[f(4) = 30 \]

If given a point on the function, we can ________.

\[f''(x) = 2x^3 + 3x^2 - 4x + 5 \quad f(0) = 2 \quad f(1) = 0 \]

\[f'(x) = \]

\[f(x) = \quad f(0) = 2 \Rightarrow \quad \]

\[f(1) = \quad \Rightarrow \]

\[f(x) = \]

A car braked with a constant deceleration of 16 ft./sec\(^2\).
producing skid marks measuring 200 ft. before coming to a stop.
How fast was the car traveling when the brakes were first applied?
\[a(t) = -16 \quad \text{The anti-derivative of acceleration is} \quad \]

We call the beginning of the skid \(_ \). We need to find the
time it takes \(\quad \). \(\leftarrow y = _ \)

The anti-derivative of velocity is \(_ \).

At the beginning of the skid \(_ \). \(\leftarrow _ = _ \)

At the end of the skid \(_ \). \(\leftarrow _ = _ \)