5.5/5.6 Substitution

THE SUBSTITUTION RULE If \(u = g(x) \) is a differentiable function whose range is an interval \(I \) and \(f \) is continuous on \(I \), then

\[
\int f(g(x)) g'(x) \, dx = \int f(u) \, du
\]

Integration by Substitution: Evaluating \(\int f(g(x)) g'(x) \, dx \)

Step 1 Let \(u = g(x) \), where \(g(x) \) is part of the integrand, usually, the “inside function” of the composite function \(f(g(x)) \).

Step 2 Compute \(du = g'(x) \, dx \).

Step 3 Use the substitution \(u = g(x) \) and \(du = g'(x) \, dx \) to transform the integral into one that involves only \(u \): \(\int f(u) \, du \).

Step 4 Find the resulting integral.

Example 1

\[
\int_{0}^{2} x^2 \sqrt{1 + x^3} \, dx
\]

Option 1: Limit Switch

\[
x = 2 \implies u = \]

\[
x = 0 \implies u =
\]
example 2

\[
\int_{\pi/6}^{\pi/4} \csc^2 x \cot x \, dx
\]

\[
f = \cot x \quad u =
\]

\[
f' = \quad du =
\]

Option 2: Don't Limit Switch

Change back into \(x\)

delete example 3

\[
\int_0^1 \sin (3\pi x) \, dx
\]

\[
u = \quad d u =
\]
example 4

\[\int \frac{1}{\sqrt{x} \left(\sqrt{x} + 1 \right)^2} \, dx \quad u = \]

\[du = \]

example 5

\[\int_{\frac{1}{2}}^{5} \frac{x}{\sqrt{x - 1}} \, dx \quad u = \Rightarrow \quad u = \]

\[du = \quad x = 5 \Rightarrow u = \]

\[x = 2 \Rightarrow u = \]
Integrals of Odd and Even Functions
Suppose that \(f \) is continuous on \([-a, a]\).

a. If \(f \) is even, then
\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} (1 + x^2 - \cos x) \, dx =
\]

b. If \(f \) is odd, then
\[
\int_{-a}^{a} f(x) \, dx = \int_{-2}^{2} (x^3 - \sin x) \, dx =
\]

Area Between Curves
Consider the region \(S \) that lies between two curves
\[y = f(x) \quad \text{and} \quad y = g(x) \]
and between the vertical lines
\[x = a \quad \text{and} \quad x = b. \]

Here, \(f \) and \(g \) are continuous functions
and \(f(x) \geq g(x) \) for all \(x \) in \([a,b] \).
We divide S into n strips of equal width and approximate the i th strip by a rectangle with base Δx and height $f(x_i^*) - g(x_i^*)$.

The Riemann sum $\sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x$

is therefore an approximation to what we intuitively think of as the area of S.

This approximation appears to become better and better as $n \to \infty$.

Thus, we define the area A of the region S as the limiting value of the sum of the areas of these approximating rectangles.

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x$$
Thus, we have the following formula for area:

\[A = \int_a^b \left[y = f(x) - y = g(x) \right] \, dx \]

Remember \(S \) is described as the region bounded by the curves \(y = f(x) \) and \(y = g(x) \) and the lines \(x = a \) and \(x = b \), where \(f \) and \(g \) are continuous and \(f(x) \geq g(x) \) for all \(x \) in \([a, b]\).

Some regions are best treated by regarding \(x \) as a function of \(y \).

If a region is bounded by the curves \(x = f(y) \) and \(x = g(y) \) and the lines \(y = c \) and \(y = d \), where \(f \) and \(g \) are continuous and \(f(y) \geq g(y) \) for all \(y \) in \([c, d]\), then its area is:

\[A = \int_c^d \left[x = f(y) - x = g(y) \right] \, dy \]
Find the area of the region bounded by the curves.

\[y = x^2 - 2x, \quad y = x + 4 \]

Select the correct answer:

a. \(\frac{125}{3} \) b. \(\frac{25}{5} \) c. 5 d. 20 e. \(\frac{125}{6} \)