We have looked at first-order differential equations from a geometric point of view (direction fields) and from a numerical point of view (Euler’s method).

- What about the symbolic point of view?

It would be nice to have an explicit formula for a solution of a differential equation.

- Unfortunately, that is not always possible.

In this section, we will learn about:

10.3 Separable Equations

In this section, we will learn about:

Certain differential equations that can be solved explicitly.

A separable equation is a first-order differential equation in which the expression for $\frac{dy}{dx}$ can be factored as a function of x times a function of y.

- In other words, it can be written in the form $\frac{dy}{dx} = g(x)f(y)$.

The name separable comes from the fact that the expression on the right side can be “separated” into a function of x and a function of y.
Equivalently, if \(f(y) \neq 0 \), we could write

\[
\frac{dy}{dx} = \frac{g(x)}{h(y)}
\]

where \(h(y) = \frac{1}{f(y)} \).

To solve this equation, we rewrite it in the differential form

\[h(y) \, dy = g(x) \, dx \]

so that:

- All \(y \)'s are on one side of the equation.
- All \(x \)'s are on the other side.

Then, we integrate both sides of the equation:

\[\int h(y) \, dy = \int g(x) \, dx \]

Equation 2 defines \(y \) implicitly as a function of \(x \).

In some cases, we may be able to solve for \(y \) in terms of \(x \).

We use the Chain Rule to justify this procedure.

- If \(h \) and \(g \) satisfy Equation 2, then
 \[
 \frac{d}{dx} \left(\int h(y) \, dy \right) = \frac{d}{dx} \left(\int g(x) \, dx \right)
 \]

Thus,

\[
\frac{d}{dy} \left(\int h(y) \, dy \right) \frac{dy}{dx} = g(x)
\]

This gives:

\[h(y) \frac{dy}{dx} = g(x) \]

Thus, Equation 1 is satisfied.
Example 1

a. Solve the differential equation
\[\frac{dy}{dx} = \frac{x^2}{y^2} \]

b. Find the solution of this equation that satisfies the initial condition \(y(0) = 2 \).

Example 1 a

We write the equation in terms of differentials and integrate both sides:
\[y^2 \, dy = x^2 \, dx \]
\[\int y^2 \, dy = \int x^2 \, dx \]
\[\frac{1}{3} y^3 = \frac{1}{3} x^3 + C \]
where \(C \) is an arbitrary constant.

Example 1 a

Solving for \(y \), we get:
\[y = \sqrt[3]{x^3 + 3C} \]

We could leave the solution like this or we could write it in the form
\[y = \sqrt[3]{x^3 + K} \]
where \(K = 3C \).

Since \(C \) is an arbitrary constant, so is \(K \).

Example 1 b

If we put \(x = 0 \) in the general solution in (a), we get:
\[y(0) = \sqrt[3]{K} \]

To satisfy the initial condition \(y(0) = 2 \), we must have \(\sqrt[3]{K} = 2 \), and so \(K = 8 \).
So, the solution of the initial-value problem is:
\[y = \sqrt[3]{x^3 + 8} \]

The figure shows graphs of several members of the family of solutions of the differential equation in Example 1.

- The solution of the initial-value problem in (b) is shown in red.
Solve the differential equation
\[\frac{dy}{dx} = \frac{6x^2}{2y + \cos y} \]

Example 2

Writing the equation in differential form and integrating both sides, we have:
\[
(2y + \cos y) \ dy = 6x^2 \ dx
\]
\[
\int (2y + \cos y) \ dy = \int 6x^2 \ dx
\]
\[
y^2 + \sin y = 2x^3 + C
\]
where \(C \) is a constant.

Example 2

Equation 3 gives the general solution implicitly.

- In this case, it’s impossible to solve the equation to express \(y \) explicitly as a function of \(x \).

Example 3

Solve the equation
\[y' = x^2y \]

- First, we rewrite the equation using Leibniz notation:
\[\frac{dy}{dx} = x^2y \]

Example 3

If \(y \neq 0 \), we can rewrite it in differential notation and integrate:
\[\frac{dy}{y} = x^2 \ dx \quad y \neq 0 \]
\[
\int \frac{dy}{y} = \int x^2 \ dx
\]
\[
\ln |y| = \frac{x^3}{3} + C
\]
The equation defines \(y \) implicitly as a function of \(x \).
However, in this case, we can solve explicitly for \(y \).

\[
|y| = e^{\ln|y|} = e^{\left(\frac{x^3}{3}\right) + C} = e^C e^{x^3/3}
\]

Hence,

\[
y = \pm e^C e^{x^3/3}
\]

We can easily verify that the function \(y = 0 \) is also a solution of the given differential equation.

- So, we can write the general solution in the form

\[
y = Ae^{x^3/3}
\]

where \(A \) is an arbitrary constant (\(A = e^C \), or \(A = -e^C \), or \(A = 0 \)).

The figure shows a direction field for the differential equation in Example 3.

If you use the direction field to sketch solution curves with \(y \)-intercepts 5, 2, 1, \(-1\), and \(-2\), they will resemble the curves in the figure.

In Section 9.2, we modeled the current \(I(t) \) in this electric circuit by the differential equation

\[
L \frac{dI}{dt} + RI = E(t)
\]

Find an expression for the current in a circuit where:

- The resistance is 12 \(\Omega \).
- The inductance is 4 H.
- A battery gives a constant voltage of 60 V.
- The switch is turned on when \(t = 0 \).

What is the limiting value of the current?
With \(L = 4 \), \(R = 12 \) and \(E(t) = 60 \),

- The equation becomes:
 \[
 4 \frac{dI}{dt} + 12I = 60 \quad \text{or} \quad \frac{dI}{dt} = 15 - 3I
 \]
- The initial-value problem is:
 \[
 \frac{dI}{dt} = 15 - 3I \quad I(0) = 0
 \]

We recognize this as being separable.

We solve it as follows:

\[
\int \frac{dI}{15 - 3I} = \int dt \quad (15 - 3I \neq 0)
\]

\[
- \frac{1}{3} \ln |15 - 3I| = t + C
\]

\[
|15 - 3I| = e^{3(t+C)}
\]

\[
15 - 3I = \pm e^{3(t+C)} = Ae^{-3t}
\]

\[
I = 5 - \frac{1}{3} Ae^{-3t}
\]

Since \(I(0) = 0 \), we have:

\[
5 - \frac{1}{3} A = 0
\]

So, \(A = 15 \) and the solution is:

\[
I(t) = 5 - 5e^{3t}
\]

The limiting current, in amperes, is:

\[
\lim_{t \to \infty} I(t) = \lim_{t \to \infty} (5 - 5e^{-3t})
\]

\[
= 5 - 5 \lim_{t \to \infty} e^{-3t}
\]

\[
= 5 - 0
\]

\[
= 5
\]

The figure shows how the solution in Example 4 (the current) approaches its limiting value.

Comparison with the other figure (from Section 9.2) shows that we were able to draw a fairly accurate solution curve from the direction field.
An orthogonal trajectory of a family of curves is a curve that intersects each curve of the family orthogonally—that is, at right angles.

Each member of the family \(y = mx \) of straight lines through the origin is an orthogonal trajectory of the family \(x^2 + y^2 = r^2 \) of concentric circles with center the origin.

- We say that the two families are orthogonal trajectories of each other.

Find the orthogonal trajectories of the family of curves \(x = ky^2 \), where \(k \) is an arbitrary constant.

The curves \(x = ky^2 \) form a family of parabolas whose axis of symmetry is the \(x \)-axis.

- The first step is to find a single differential equation that is satisfied by all members of the family.

To eliminate \(k \), we note that:

- From the equation of the given general parabola \(x = ky^2 \), we have \(k = x/y^2 \).
Hence, the differential equation can be written as:
\[
\frac{dy}{dx} = \frac{1}{2ky} = \frac{1}{2\frac{x^2}{y^2} y}
\]
or
\[
\frac{dy}{dx} = \frac{y}{2x}
\]
- This means that the slope of the tangent line at any point \((x, y)\) on one of the parabolas is: \(y' = y/(2x)\)

Orthogonal trajectories occur in various branches of physics.
- In an electrostatic field, the lines of force are orthogonal to the lines of constant potential.
- The streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential curves.
If \(y(t) \) denotes the amount of substance in the tank at time \(t \), then \(y'(t) \) is the rate at which the substance is being added minus the rate at which it is being removed.

- The mathematical description of this situation often leads to a first-order separable differential equation.

We can use the same type of reasoning to model a variety of phenomena:

- Chemical reactions
- Discharge of pollutants into a lake
- Injection of a drug into the bloodstream

Example 6

A tank contains 20 kg of salt dissolved in 5000 L of water.

- Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L/min.
- The solution is kept thoroughly mixed and drains from the tank at the same rate.
- How much salt remains in the tank after half an hour?

Let \(y(t) \) be the amount of salt (in kilograms) after \(t \) minutes.

We are given that \(y(0) = 20 \) and we want to find \(y(30) \).

We do this by finding a differential equation satisfied by \(y(t) \).

Note that \(dy/dt \) is the rate of change of the amount of salt.

Thus,

\[
\frac{dy}{dt} = (\text{rate in}) - (\text{rate out})
\]

where:

- ‘Rate in’ is the rate at which salt enters the tank.
- ‘Rate out’ is the rate at which it leaves the tank.

We have:

\[
\text{rate in} = \left(0.03 \frac{\text{kg}}{\text{L}}\right) \left(25 \frac{\text{L}}{\text{min}}\right)
\]

\[
= 0.75 \frac{\text{kg}}{\text{min}}
\]
The tank always contains 5000 L of liquid.

- So, the concentration at time t is $y(t)/5000$ (measured in kg/L).

As the brine flows out at a rate of 25 L/min, we have:

\[
\text{rate out} = \left(\frac{y(t) \text{ kg}}{5000 \text{ L}} \right) \left(\frac{25 \text{ L}}{\text{min}} \right)
\]

\[
\frac{y(t) \text{ kg}}{200 \text{ min}}
\]

Thus, from Equation 5, we get:

\[
\frac{dy}{dt} = 0.75 - \frac{y(t)}{200} = \frac{150 - y(t)}{200}
\]

- Solving this separable differential equation, we obtain:

\[
\int \frac{dy}{150 - y} = \int \frac{dt}{200} - \ln |150 - y| = \frac{t}{200} + C
\]

Since $y(0) = 20$, we have:

\[-\ln 130 = C\]

So,

\[-\ln |150 - y| = \frac{t}{200} - \ln 130\]

Therefore,

\[|150 - y| = 130e^{-t/200}\]

- $y(t)$ is continuous and $y(0) = 20$, and the right side is never 0.

- We deduce that $150 - y(t)$ is always positive.

Thus, $|150 - y| = 150 - y$.

So,

\[y(t) = 150 - 130e^{-t/200}\]

- The amount of salt after 30 min is:

\[y(30) = 150 - 130e^{-30/200} \approx 38.1 \text{ kg}\]
Here’s the graph of the function $y(t)$ of Example 6.

- Notice that, as time goes by, the amount of salt approaches 150 kg.