A power series is a series of the form
\[\sum_{n=0}^{\infty} c_n x^n = \]
where:
a)
b)

For each fixed \(x \), the series above is a series of constants that we can test for convergence or divergence.

A power series may converge for some values of \(x \) and diverge for other values of \(x \).

The sum of the series is a function

whose ________ is the set of all \(x \) for which the series converges.
\(f(x) \) is reminiscent of a ________ but it has infinitely many terms.

If all \(c_n \)'s = 1, we have
\[f(x) = 1 + x + x^2 + \ldots + x^n + \ldots = \sum_{n=0}^{\infty} x^n \]
This is the ________________ with ____.
The power series will converge for ____ and diverge for all other \(x \).
In general, a series of the form

is called a power series ________ or a power series about \(a \)

We use the \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \) to find for what values of \(x \) the series converges.

Solve for \(|x - a| \) to get \(|x - a| < R \)

\[\Rightarrow -R < x - a < R \]
\[\Rightarrow a - R < x < a + R \]

This is called the ________ ________ (I.O.C.).

Plug in the endpoints to check for convergence or divergence at the endpoints.

Find the radius of convergence and the interval of convergence.

\[\sum_{n=1}^{\infty} \frac{(-1)^n n^2 x^n}{2^n} \]

\(x = \) ________ \(x = \) ________

Radius of convergence: ________
Interval of convergence: ________
Find the radius of convergence and the interval of convergence.

\[
\sum_{n=1}^{\infty} \frac{3^n (x + 4)^n}{\sqrt{n}}
\]

Check endpoints:

\[x = \quad x = \]

R.O.C.: ______
I.O.C.: ______

Find the radius of convergence and the interval of convergence.

\[
\sum_{n=1}^{\infty} \frac{(4x + 1)^n}{n^2}
\]

Check endpoints:

\[x = \quad x = \]

R.O.C.: ______
I.O.C.: ______
Sometimes the Root Test can be used just as the Ratio Test.

When \(a_n \) can be written as \((b_n)^n \), then the Root Test should be used.

\[
\sum_{n=1}^{\infty} \frac{3^n (x - 5)^n}{n^n}
\]

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 \Rightarrow
\]

\[
\sum_{n=1}^{\infty} \frac{n! (x - 7)^n}{2^n}
\]

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty \Rightarrow
\]
Find the radius of convergence.

\[
\sum_{n=1}^{\infty} \frac{(-1)^n (n!)^2 x^{2n}}{(2n)!}
\]

Radius of convergence: _____