9.3 Center of Mass 1-d

Archimedes' Law of the Lever

the rod will balance if

\[m_1 d_1 = m_2 d_2 \]

moment of \(m_1 \) (with respect to the origin)

moment of \(m_2 \) (with respect to the origin)

moment of the system about the origin

\[\bar{x} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \]

total mass

If the total mass was concentrated at \(\bar{x} \), then its moment would be the same as the moment for the system.
9.3 Center of Mass 2-d

The center of mass is the point \(\left(\bar{x}, \bar{y} \right) \) where a single particle with the same mass as the total mass would have the same moments as the system.

\[M_y = \bar{y} \text{ (total mass)} \]
\[M_x = \bar{x} \text{ (total mass)} \]

\[M_y = m_1 y_1 + m_2 y_2 + m_3 y_3 \]
\[M_x = m_1 x_1 + m_2 x_2 + m_3 x_3 \]

\[\bar{y} = \frac{M_y}{\text{total mass}} \]
\[\bar{x} = \frac{M_x}{\text{total mass}} \]

9.3 Center of Mass 3-d

Consider a flat plate (called a lamina) with uniform density \(\rho \) that occupies a region \(\mathcal{R} \) of the plane.

The center of mass of the plate is called the **centroid** of \(\mathcal{R} \).
Thin plate: region between \(y = f(x) \) and \(y = g(x) \) with \(f(x) \geq g(x) \)

Constant density function \(\rho(x) = \rho \)

Moment about the \(x \)-axis

\[
M_x = \frac{\rho}{2} \int_a^b \left[(f(x))^2 - (g(x))^2 \right] dx
\]

Center of Mass

\[
\begin{align*}
\bar{x} &= \frac{M_y}{M} = \frac{1}{A} \int_a^b x(f(x) - g(x)) dx \\
\bar{y} &= \frac{M_z}{M} = \frac{1}{2A} \int_a^b \left[(f(x))^2 - (g(x))^2 \right] dx
\end{align*}
\]

Let \(A = \text{area} \) of the region b/w \(f(x) \) and \(g(x) \)

Thin plate: region between \(y = x - x^2 \) and \(y = -x \)

Constant density function \(\rho(x) = \rho \)

Limits of integration: \(x - x^2 = -y \)

\[
\begin{align*}
2x - x^2 &= 0 \\
x(2 - x) &= 0 \\
x = 0, \; x = 2
\end{align*}
\]

Moment about the \(x \)-axis

\[
\begin{align*}
M_x &= \frac{\rho}{2} \int_0^2 \left[(x - x^2)^2 - (-x)^2 \right] dx \\
&= \frac{\rho}{2} \int_0^2 \left[(x - x^2)^2 - (x^2)^2 \right] dx \\
&= \frac{\rho}{2} \int_0^2 \left[(x - x^2)^2 + x^4 \right] dx \\
&= \frac{\rho}{2} \left[\frac{-x^4}{2} + \frac{x^5}{5} \right]_0^2 = \frac{\rho}{2} \left[\frac{-32}{5} \right] = \frac{\rho}{2} \left[\frac{-40 + 32}{5} \right] = \frac{\rho}{2} \left[\frac{-4}{5} \right] = \frac{-4}{5} \rho
\end{align*}
\]
Moment about the \(y-\text{axis} \)

\[
M_y = \rho \int_0^b x \cdot (f(x) - g(x)) \, dx
\]

\[
= \rho \int_0^2 x \left[(x-x^2) - (-x) \right] \, dx = \rho \int_0^2 x \cdot (2x-x^2) \, dx = \rho \int_0^2 (2x^2-x^3) \, dx
\]

\[
= \rho \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^2 = \rho \left[\frac{16}{3} - \frac{16}{4} \right] = \rho \left(\frac{16}{3} - 4 \right) = \rho \left(\frac{16-12}{3} \right) = \frac{4}{3} \rho
\]

Mass

\[
M = \rho \cdot \int_a^b \left(f(x) - g(x) \right) \, dx
\]

Area of the region b/w \(f(x) \) and \(g(x) \)

\[
= \rho \cdot \int_0^2 (2x-x^2) \, dx = \rho \left[x^2 - \frac{x^3}{3} \right]_0^2 = \rho \left(4 - \frac{8}{3} \right) = \rho \left(\frac{12-8}{3} \right) = \frac{4}{3} \rho
\]

Center of Mass

\[
\bar{x} = \frac{M_y}{M}, \quad \bar{y} = \frac{M_x}{M}
\]

\[
\bar{x} = \frac{4}{3} \delta, \quad \bar{y} = \frac{-4}{3} \delta, \quad \bar{x} = 1, \quad \bar{y} = \frac{-3}{5}
\]

\[
(\bar{x}, \bar{y}) = \left(1, \frac{-3}{5} \right)
\]
General Formulas

Thin plate: region under the graph of \(y = f(x) \) and above the \(x \)-axis

Constant density function \(\rho(x) = \rho \)

Set \(g(x) = 0 \) in the previous formulas.

\[
M_x = \frac{\rho}{2} \int_a^b [f(x)]^2 \, dx
\]

\[
M_y = \rho \int_a^b x f(x) \, dx
\]

\[
M = \rho \int_a^b f(x) \, dx
\]

Let \(A = \text{area under } f(x) \)

Center of Mass \((\bar{x}, \bar{y}) \)

\[
\bar{x} = \frac{1}{A} \int_a^b x \cdot f(x) \, dx
\]

\[
\bar{y} = \frac{1}{2A} \int_a^b [f(x)]^2 \, dx
\]