PROBLEM 7: What is the centroid of the region bounded by the curves $y = x^2$ and $y = 8 - x^2$?

Hint: draw a picture of this region as your first step.

(a) $(-2, 3)$ (b) $(2, 5)$ (c) $(-1, 4)$ (d) $(0, 4)$ (e) $(0, 3)$ (f) $(1, 4)$
11. Suppose that the region bounded by \(y = 4 \tan(x^2) \) and the \(x \)-axis for \(0 \leq x \leq \frac{\sqrt{\pi}}{2} \) is a thin homogeneous density plate of area \(A \). Then the \(x \)-coordinate of the center of mass of the plate is:

(a) \(\frac{2}{A} \pi^2 \)
(b) \(\frac{2}{A} \pi \)
(c) \(\frac{1}{A} \ln 2 \)
(d) \(\frac{3}{A} \sqrt{\pi} \)
(e) 0
(f) \(\frac{e \pi}{2} \)
12. What is the area of the surface obtained by rotating the part of the curve \(y = \sqrt{4-x^2} \) from \(x = 0 \) to \(x = 1 \) around the \(x \)-axis?

A) \(4\pi \)
B) \(2\pi \)
C) \(\pi \)
D) \(\sqrt{2}\pi \)
E) \(3\pi \)
F) \(8\pi \)
2. Find the length of the arc of the curve defined by \(y = \frac{2}{3} \sqrt{x^3} \) for \(0 \leq x \leq 3 \).

(A) \(\frac{\pi}{2} \) (B) \(\frac{\pi}{4} \) (C) 4 (D) 5 \ln 3 (E) \(\frac{14}{3} \) (F) \(\frac{1}{4} \) (G) \(\frac{e}{8} \) (H) \(\frac{\ln 3}{2} \)
9. Find the arc length of the graph of \(y = \frac{x^3}{3} + \frac{1}{4x} \) between \(x = 1 \) and \(x = 2 \). [Note: It may be helpful to use identities like \((x^2 + \frac{1}{4x^2})^2 = x^4 + \frac{1}{2} + \frac{1}{16x^4}\).]

(a) 0
(b) 59/24
(c) \(\frac{8}{27}(10\sqrt{10} - 1)\)
(d) \(\pi \ln(2)\)
(e) \(\frac{3}{8} + \ln(2)\)
(f) It is divergent.
10. Consider the graph of $y = \ln(\cos(x))$ between $x = 0$ and $x = 1$. Which of the following integrals corresponds to the surface area of the object obtained by rotating this graph about the x-axis?

(a) $\int_0^1 2\pi \sqrt{1 + \ln(\cos(x))^2} \, dx$
(b) $\int_0^1 2\pi \ln(\sin(x)) \sqrt{1 + \sec^2(x)} \, dx$

(c) $\int_0^1 2\pi \cos(x) \ln(\sin(x)) \, dx$
(d) $\int_0^1 2\pi \sec(x) \ln(\cos(x)) \, dx$

(e) $\int_0^1 2\pi x^2 \sin(x) \cos(x) \ln(x) \, dx$
(f) $\int_0^1 2\pi \sin^2(x) \sqrt{1 + \ln(x)^2} \, dx$
7. What is the arclength of the part of the curve $y = \frac{1}{12} e^x + 3e^{-x}$ for $\ln 2 \leq x \leq \ln 4$?

(A) $\frac{5}{12}$ (B) $\frac{1}{2}$ (C) $\frac{7}{12}$ (D) $\frac{2}{3}$ (E) $\frac{3}{4}$ (F) $\frac{5}{6}$ (G) $\frac{11}{12}$ (H) 1
10. An artist is designing a wine glass in a flower shape, which can be generated by rotating the region bounded by $y = \sqrt{x}$ and $x = y$, between $x = 0$ and $x = 1$, about x-axis. What is the surface area (which contains both the inside and the outside surfaces) of such a glass?

(a) $\left(\frac{8\sqrt{2} - 4}{3} + \sqrt{2}\right)\pi$
(b) $\left(\frac{8\sqrt{2} - 4}{3} + \sqrt{5}\right)\pi$
(c) $\left(\frac{8\sqrt{2} - 4}{3} + 1\right)\pi$
(d) $\left(\frac{5\sqrt{5} - 1}{6} + \sqrt{2}\right)\pi$
(e) $\left(\frac{5\sqrt{5} - 1}{6} + \sqrt{5}\right)\pi$
(f) $\left(\frac{5\sqrt{5} - 1}{6} + 1\right)\pi$
2. Find the volume of the solid obtained by rotating the region bounded by the curves
\[y = e^{x^2} \quad \text{and} \quad y = 0 \quad \text{and} \quad x = 0 \quad \text{and} \quad x = 2 \]
about the \(y \)-axis.
A.) \(4\pi e^4 \) B.) \(2\pi e^4 \) C.) \(2\pi (e^4 - 1) \) D.) \(\pi (e^4 - 1) \) E.) \(\pi \sqrt{e} \) F.) \(\pi e \)
1. Find the volume of the solid obtained by rotating the region bounded by the curves

\[y = x^2, \quad y = 0, \quad x = 2 \]

about the line \(x = 4 \).

A.) \(10\pi/3 \) \quad B.) \(16\pi/3 \) \quad C.) \(20\pi/3 \) \quad D.) \(32\pi/3 \) \quad E.) \(40\pi/3 \) \quad F.) \(64\pi/3 \)
ANSWERS:

Spring 2013 # 7: D
Fall 2012 # 11: C
SPRING 2012 # 12: A
FALL 2011 # 2: E
SPRING 2011 # 9: B
SPRING 2011 # 10: D
FALL 2010 # 7: G
SPRING 2010 # 10: D
SPRING 2007 # 2: D
SPRING 2006 # 1: E