1. Calculate the average value of the function \(g(x, y) = 12xyz^2 \) over the box defined by \(\{(x, y, z) \mid 1 \leq x \leq 3, \ 0 \leq y \leq 1, \ -1 \leq z \leq 2\} \):

 (A) 0 \hspace{1cm} (B) 2 \hspace{1cm} (C) 3
 (D) 4 \hspace{1cm} (E) 12 \hspace{1cm} (F) 13

2. Water is being poured into a container shaped like the paraboloid \(z = x^2 + y^2 \) at a constant rate (where \(x, y \) and \(z \) are all measured in meters). How much longer will it take to fill the container to a height of 3 meters than to fill it to a height of 1 meter?

 (A) \(\sqrt{3} \) times as long \hspace{1cm} (B) 3 times as long \hspace{1cm} (C) \(3\sqrt{3} \) times as long
 (D) 9 times as long \hspace{1cm} (E) \(9\sqrt{3} \) times as long \hspace{1cm} (F) 27 times as long
3. Calculate the work done by the force field \(F = (5y, 7x^2) \) on a particle that moves along the curve given by \(x = t^2, \ y = 2t^3 \) for \(0 \leq t \leq 1 \).

(A) 4
(B) 5
(C) 10
(D) 15
(E) 16
(F) 32

4. Calculate \(\iiint_S \frac{1}{\sqrt{x^2 + y^2 + z^2}} \, dV \) where \(S \) is the spherical shell bounded by the two spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 9 \).

(A) \(8\pi \)
(B) \(12\pi \)
(C) \(16\pi \)
(D) \(24\pi \)
(E) \(30\pi \)
(F) \(36\pi \)
5. Calculate $\int_C (1 + \sin \pi y) \, dx + (2 + \pi x \cos \pi y) \, dy$ where the curve C follows the ellipse $4x^2 + y^2 = 1$ from the point $(0, -1)$ to the point $(0, 1)$.

(A) 0 \hspace{1cm} (B) 1 \hspace{1cm} (C) 2 \\
(D) 4 \hspace{1cm} (E) 6 \hspace{1cm} (F) 8

6. Calculate $\int_C (y + e^{-2x}) \, dx + (2x - \cos^2 y) \, dy$ where C is the circle of radius 2 centered at the point $(1, 3)$, traversed counterclockwise.

(A) 2π \hspace{1cm} (B) 4π \hspace{1cm} (C) 8π \\
(D) $2\pi e$ \hspace{1cm} (E) $4\pi e$ \hspace{1cm} (F) 0
7. Calculate $\int \int_R 4x^2 \, dA$ where R is the region in the first quadrant bounded by the graphs of $y = 1/x$, $y = 4/x$, $x = y$ and $x = 9y$ (so R is a region with four corners, at (1,1), (2,2), (6,2/3) and (3,1/3). Letting $u = xy$ and $v = x/y$ might help. Don’t forget...).

(A) 60
(B) 120
(C) 180
(D) 225
(E) 240
(F) 1200

8. Let H be the top half of the ball $x^2 + y^2 + z^2 \leq 4$ (i.e., the part where $z \geq 0$). Calculate $\int \int \int_H x^2 \, dV$

(A) $\frac{16\pi}{15}$
(B) $\frac{64\pi}{15}$
(C) $\frac{81\pi}{5}$
(D) $\frac{81\pi}{15}$
(E) $\frac{1250\pi}{3}$
(F) $\frac{1250\pi}{15}$