14.5 Directional Derivatives and Gradients

\[z = f(x, y) \]

\[f_x(x_0, y_0) \] is the rate of change of \(z \) in the direction parallel to the \(x \)-axis.

\[f_y(x_0, y_0) \] is the rate of change of \(z \) in the direction parallel to the \(y \)-axis.

What about the rate of change of \(z \) in other directions?

Want to find the rate of change of \(z \) at \((x_0, y_0, z_0) \) in the direction of an arbitrary unit vector \(\mathbf{u} = \langle a, b \rangle \).

Surface \(S \) with equation \(z = f(x, y) \)

The vertical plane that passes through \(P \) in the direction of \(\mathbf{u} \) intersects the \(S \) in a curve \(C \).

The slope of the tangent line \(T \) to \(C \) at the point \(P \) is the rate of change of \(z \) in the direction of \(\mathbf{u} \).

Let \(Q(x, y, z) \) be another point on \(C \).

Project \(P \) and \(Q \) onto the \(xy \)-plane to get \(P' \) and \(Q' \).

\[\overrightarrow{PQ} = \mathbf{u} = \langle ha, hb \rangle \]

\[ha = x - x_0 \] and \(hb = y - y_0 \)

\[x = x_0 + ha \] and \(y = y_0 + hb \)

\[z = f(x, y) = f(x_0 + ha, y_0 + hb) \]
The directional derivative of \(f(x, y) \) in the direction of \(\mathbf{u} \) at \((x_0, y_0) \) is given by:

\[
D_{\mathbf{u}} f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}
\]

It is more practical to find \(D_{\mathbf{u}} f \) by using the gradient.

Gradient of a function of two variables \(z = f(x, y) \):

\[
\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)
\]

If you want to know the rate of change of \(f \) in the direction of an angle \(\theta \) with the positive \(x \)-axis, then \(\mathbf{u} = (\cos \theta, \sin \theta) \).

\[
D_{\mathbf{u}} f(x_0, y_0) = \nabla f(x_0, y_0) \cdot (\cos \theta, \sin \theta)
\]
Find the directional derivative of \(f(x, y) = x^2 - 3xy + 4y^3 \) at the point \(P(-2, 0) \) in the direction of \(a = i + 2j \)

\[
D_uf(-2, 0) = \nabla f(-2, 0) \cdot u
\]

\[
f(x, y) = x^2 - 3xy + 4y^3 \Rightarrow \nabla f(x, y) = \langle 2x - 3y, -3x + 12y^2 \rangle
\]

\[
\nabla f(-2, 0) = \langle -4, 6 \rangle
\]

\[
a = i + 2j \Rightarrow |a| = \sqrt{5} \Rightarrow u = \left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle
\]

\[
D_uf(-2, 0) = \langle -4, 6 \rangle \cdot \left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle = \frac{-4}{\sqrt{5}} + \frac{12}{\sqrt{5}} = \frac{8}{\sqrt{5}}
\]

Find the directional derivative of \(f(x, y, z) = \frac{z-x}{z+y} \) at the point \(P(1,0,-3) \) in the direction of \(a = -6i + 3j - 2k \)

\[
D_uf(1,0,-3) = \nabla f(1,0,-3) \cdot u
\]

\[
f(x, y, z) = \frac{z-x}{z+y} \quad f_x(x, y, z) = -\frac{1}{z+y} \quad f_y(x, y, z) = \frac{y-x}{(z+y)^2} \quad f_z(x, y, z) = \frac{x-y}{(z+y)^2}
\]

\[
\nabla f(x, y, z) = \left\langle \frac{-1}{z+y}, \frac{x-z}{(z+y)^2}, \frac{y-x}{(z+y)^2} \right\rangle \Rightarrow \nabla f(1,0,-3) = \left\langle \frac{1}{3}, \frac{4}{9}, \frac{1}{9} \right\rangle
\]

\[
a = -6i + 3j - 2k \Rightarrow |a| = \sqrt{36 + 9 + 4} = \sqrt{49} = 7 \Rightarrow u = \left\langle \frac{-6}{7}, \frac{3}{7}, \frac{-2}{7} \right\rangle
\]

\[
D_uf(1,0,-3) = \left\langle \frac{1}{3}, \frac{4}{9}, \frac{1}{9} \right\rangle \cdot \left\langle \frac{-6}{7}, \frac{3}{7}, \frac{-2}{7} \right\rangle = \frac{1}{3} \left(\frac{-6}{7} \right) + \frac{4}{9} \left(\frac{3}{7} \right) + \frac{1}{9} \left(\frac{-2}{7} \right)
\]

\[
= -\frac{18 + 12 - 2}{63} = -\frac{8}{63}
\]
The maximum value of the directional derivative at \((x_0, y_0)\) is \(\|\nabla f(x_0, y_0)\|\)
and occurs when \(\mathbf{u}\) has the same direction as \(\nabla f(x_0, y_0)\).

\[
D_u f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{u} = \|\nabla f(x_0, y_0)\| \cdot |\mathbf{u}| \cos \theta \\
= \|\nabla f(x_0, y_0)\| \cos \theta \quad \text{since} \quad |\mathbf{u}| = 1
\]

will be maximized

when \(\cos \theta = 1\)

\(\Rightarrow\) The maximum value of \(D_u f(x_0, y_0)\) is \(\|\nabla f(x_0, y_0)\|\)

and \(\theta = 0 \Rightarrow \mathbf{u}\) has the same direction as \(\nabla f(x_0, y_0)\).

The minimum value of the directional derivative at \((x_0, y_0)\) is \(-\|\nabla f(x_0, y_0)\|\)

and occurs when \(\mathbf{u}\) has the opposite direction as \(\nabla f(x_0, y_0)\).

\(\nabla f(x_0, y_0)\) is perpendicular to the level curve \(f(x, y) = k\) that passes through the point \(P(x_0, y_0)\)

On a topographical map, if \(f(x, y)\) represents the height above sea level
at a point with coordinates \((x, y)\), the path of steepest ascent is perpendicular
to all the contour lines.
Let S be a surface with equation $F(x, y, z) = k$

- S is a level surface of a function F of three variables

Let $P(x_0, y_0, z_0)$ be a point on S.

Let C be any curve that lies on the surface S and passes through the point P.

Let C defined by $r(t) = \langle x(t), y(t), z(t) \rangle$

Any point $\langle x(t), y(t), z(t) \rangle$ on C is also on S.

$\Rightarrow F(x(t), y(t), z(t)) = k$

If $x, y,$ and z are differentiable functions of t and F is also differentiable, then

$$\frac{dF}{dt} = \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = 0$$

Another way to write this is:

$$\nabla F \cdot r'(t) = 0$$

$\Rightarrow \nabla F \perp r'(t)$

Let t_0 be the parameter value corresponding to P.

$$r(t_0) = \langle x_0, y_0, z_0 \rangle$$

The tangent vector $r'(t_0)$ lies in the tangent plane to the surface S at the point P.

$$\nabla F \cdot r'(t_0) = 0 \Rightarrow \nabla F(x_0, y_0, z_0)$$

is the normal vector to the tangent plane to S at P

The equation of the plane with normal $\langle a, b, c \rangle$ containing the point $\langle x_0, y_0, z_0 \rangle$:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

When the plane is the tangent plane to the surface $F(x, y, z) = k$ at the point $\langle x_0, y_0, z_0 \rangle$:

$$a = F_x(x_0, y_0, z_0) \quad b = F_y(x_0, y_0, z_0) \quad c = F_z(x_0, y_0, z_0)$$

$$0(x - x_0) + F_x(x_0, y_0, z_0)(y - y_0) + F_y(x_0, y_0, z_0)(z - z_0) = 0$$

Spring 2006 Final

5. Let S be the surface $x^2 + 4z^2 - yz = 0$. An equation for the tangent plane to S at $(1, 2, -1)$ is

$$F_x = 2x + 4z \quad F_y = 0 \quad F_z = 12xz^2 - y$$

$$F_x(1, -2, 1) = 4 \quad F_y(1, -2, 1) = 1 \quad F_z(1, -2, 1) = 12 - 2$$

$0(x - 1) + 2(y - 2) + 10(z + 1) = 0$

$2y - 4 + 10z + 10 = 0 \Rightarrow 2y + 10z + 6 = 0$

$y + 5z + 3 = 0$