14.4 Chain Rule

\[z = f(x, y) \]

\[x = g(t) \]
\[y = h(t) \]

\[\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \]

Let \(z = e^{xy} \cos(x^2) \) with \(x = \sqrt{t} \) and \(y = \ln t \). Use the chain rule to find \(\frac{dz}{dt} \) at \((1, 0)\).
\[z = f(x, y) \]
\[x = g(s, t) \]
\[y = h(s, t) \]

\[
\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}
\]

\[
\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\]
Implicit Differentiation

\[z = f(x, y) \]

\(y \) defined implicitly as a function of \(x \)

\[y = g(x) \]

\[z = f(x, g(x)) \]

Set the function equal to 0.

\[w = F(x, y) \]

\[\frac{dy}{dx} = - \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = - \frac{F_x}{F_y} \]
Implicit Differentiation

\[w = f(x, y, z) \]

\[\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{F_x}{F_z} \]

\[z = g(x, y) \]

\[\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{F_y}{F_z} \]

Set the function equal to 0.

\[p = F(x, y, z) \]