15.1 Intro. to Double Integrals

Single variable integral: area under the graph of the function and above the x-axis found by using the area of infinitely many rectangles.

\[A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \quad A = \int_{a}^{b} f(x) \, dx \]

Double variable integral: volume under the graph of the function (surface) and above the xy-plane found by using the volume of infinitely many rectangular prisms.
15.1 Intro. To Double Integrals

d = y_m

\(\sum \sum \)

\[V \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i^*, y_j^*) \Delta A\]
Approximate the volume V of the solid lying under the graph of the elliptic paraboloid $z = 8 - 2x^2 - y^2$ and above the rectangle $R = \{(x,y) \mid 0 \leq x \leq 1, 0 \leq y \leq 2\}$.

Using the partition P of R that is obtained by dividing R into four rectangles with the lines $x = \frac{1}{2}$ and $y = 1$ and use the evaluation point (x^*_i, y^*_j) to be the upper right hand corner of each subrectangle.

The approximations get better and better as m and n increase.

$$ V = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x^*_i, y^*_j) \Delta A = \iint_R f(x, y) \, dA $$

Fubini’s Theorem for Rectangular Regions

Let f be continuous over the rectangle $R = \{(x,y) \mid a \leq x \leq b, c \leq y \leq d\}$, then

$$ \iint_R f(x, y) \, dA = $$
15.1 Iterated Integrals

\[
\iiint_R f(x, y) \, dA = \int_a^b \left[\int_x^c f(x, y) \, dx \right] dy = \int_a^b \left[\int_y^c f(x, y) \, dy \right] dx
\]

Integrate w.r.t. \(_ \) first treating \(_ \) as a constant
Work \(_ \)

This inside integral can be thought of as a function of \(y \), call it \(A(y) \)

This inside integral can be thought of as a function of \(x \), call it \(A(x) \)

Find the volume \(V \) of the solid lying under the graph of the elliptic paraboloid \(z = 8 - 2x^2 - y^2 \) and above the rectangle \(R = \left\{ (x, y) \mid 0 \leq x \leq 1, 0 \leq y \leq 2 \right\} \)
Evaluate
\[\int_{0}^{1} \int_{2}^{3} \frac{1}{(x + 4y)^3} \, dx \, dy \]