PARTIAL DERIVATIVES
 15.4
 Tangent Planes and Linear Approximations

In this section, we will learn how to:
Approximate functions using
tangent planes and linear functions.

TANGENT PLANES

Suppose a surface S has equation $z=f(x, y)$, where f has continuous first partial derivatives.

Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S.

TANGENT PLANES

Example 1

Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.

- Let $f(x, y)=2 x^{2}+y^{2}$.
- Then,

$$
\begin{array}{ll}
f_{x}(x, y)=4 x & f_{y}(x, y)=2 y \\
f_{x}(1,1)=4 & f_{y}(1,1)=2
\end{array}
$$

TANGENT PLANES

The figure shows the elliptic paraboloid and its tangent plane at $(1,1,3)$ that we found in Example 1.

LINEAR APPROXIMATIONS
In Example 1, we found that an equation of the tangent plane to the graph of the function $f(x, y)=2 x^{2}+y^{2}$ at the point $(1,1,3)$ is:

$$
z=4 x+2 y-3
$$

LINEARIZATION \& LINEAR APPROXIMATION

The function L is called the linearization of f at $(1,1)$.

The approximation

$$
f(x, y) \approx 4 x+2 y-3
$$

is called the linear approximation or tangent plane approximation of f at $(1,1)$.

INEAR APPROXIMATIONS

Thus, in view of the visual evidence in the previous two figures, the linear function of two variables

$$
L(x, y)=4 x+2 y-3
$$

is a good approximation to $f(x, y)$ when (x, y) is near $(1,1)$.

LINEAR APPROXIMATIONS
For instance, at the point $(1.1,0.95)$, the linear approximation gives:

$$
\begin{aligned}
& f(1.1,0.95) \\
& \approx 4(1.1)+2(0.95)-3 \\
& =3.3
\end{aligned}
$$

- This is quite close to the true value of $f(1.1,0.95)=2(1.1)^{2}+(0.95)^{2}=3.3225$

LINEAR APPROXIMATIONS

However, if we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approximation.

- In fact, $L(2,3)=11$, whereas $f(2,3)=17$.

LINEAR APPROXIMATIONS

In general, we know from Equation 2 that an equation of the tangent plane to the graph of a function f of two variables at the point $(a, b, f(a, b))$ is:

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

LINEARIZATION
Equation 3
The linear function whose graph is this tangent plane, namely

$$
\begin{aligned}
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)
\end{aligned} \quad \begin{aligned}
& \quad+f_{y}(a, b)(y-b)
\end{aligned}
$$

is called the linearization of f at (a, b).

LINEAR APPROXIMATION
Equation 4
The approximation

$$
\begin{aligned}
f(x, y) \approx f(a, b)+ & f_{x}(a, b)(x-a) \\
& +f_{y}(a, b)(y-b)
\end{aligned}
$$

is called the linear approximation or the tangent plane approximation of f at (a, b).

LINEAR APPROXIMATIONS Example 2

Show that $f(x, y)=x e^{x y}$ is differentiable at $(1,0)$ and find its linearization there.

Then, use it to approximate $f(1.1,-0.1)$.

LINEAR APPROXIMATIONS

Example 2

The partial derivatives are:

$$
\begin{array}{ll}
f_{x}(x, y)=e^{x y}+x y e^{x y} & f_{y}(x, y)=x^{2} e^{x y} \\
f_{x}(1,0)=1 & f_{y}(1,0)=1
\end{array}
$$

- Both f_{x} and f_{y} are continuous functions.
- So, f is differentiable by Theorem 8.

LINEAR APPROXIMATIONS Example 2
The linearization is:

$$
\begin{aligned}
L(x, y) & =f(1,0)+f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0) \\
& =1+1(x-1)+1 \cdot y \\
& =x+y
\end{aligned}
$$

LINEAR APPROXIMATIONS
Example 2
The corresponding linear approximation is:

$$
x e^{x y} \approx x+y
$$

So,

$$
f(1.1,-0.1) \approx 1.1-0.1=1
$$

- Compare this with the actual value of

$$
f(1.1,-0.1)=1.1 e^{-0.11} \approx 0.98542
$$

DIFFERENTIALS
For a differentiable function of one variable, $y=f(x)$, we define the differential $d x$ to be an independent variable.

- That is, $d x$ can be given the value of any real number.

DIFFERENTIALS

Equation 9

Then, the differential of y is defined
as:

$$
d y=f^{\prime}(x) d x
$$

- See Section 3.10

DIFFERENTIALS

Δy represents the change in height of the curve $y=f(x)$.
$d y$ represents the change in height of the tangent line when x changes by an amount $d x=\Delta x$.

DIFFERENTIALS
The figure shows the relationship between the increment Δy and the differential $d y$.

DIFFERENTIALS

For a differentiable function of two variables, $z=f(x, y)$, we define the differentials $d x$ and $d y$ to be independent variables.

- That is, they can be given any values.

TOTAL DIFFERENTIAL

Equation 10
Then the differential $d z$, also called the total differential, is defined by:

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

- Compare with Equation 9.
- Sometimes, the notation $d f$ is used in place of $d z$.

DIFFERENTIALS

If we take $d x=\Delta x=x-a$ and $d y=\Delta y=y-b$
in Equation 10, then the differential of z
is:
$d z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$

- So, in the notation of differentials, the linear approximation in Equation 4 can be written as:

$$
f(x, y) \approx f(a, b)+d z
$$

DIFFERENTIALS

The figure is the three-dimensional counterpart of the previous figure.

DIFFERENTIALS
$d z$ is the change in height of the tangent plane.

DIFFERENTIALS
It shows the geometric interpretation of the differential $d z$ and the increment Δz.

DIFFERENTIALS

Δz represents the change in height of the surface $z=f(x, y)$ when (x, y) changes from (a, b) to $(a+\Delta x, b+\Delta y)$.

DIFFERENTIALS

Example 4

a. If $z=f(x, y)=x^{2}+3 x y-y^{2}$, find the differential $d z$.
b. If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare Δz and $d z$.

DIFFERENTIALS
Example 4 a
Definition 10 gives:

$$
\begin{aligned}
d z & =\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \\
& =(2 x+3 y) d x+(3 x-2 y) d y
\end{aligned}
$$

DIFFERENTIALS

The increment of z is:

$$
\begin{aligned}
\Delta z & =f(2.05,2.96)-f(2,3) \\
& =\left[(2.05)^{2}+3(2.05)(2.96)-(2.96)^{2}\right] \\
& \quad-\left[2^{2}+3(2)(3)-3^{2}\right] \\
& =0.6449
\end{aligned}
$$

- Notice that $\Delta z \approx d z$, but $d z$ is easier to compute.

DIFFERENTIALS

In Example 4, $d z$ is close to Δz because the tangent plane is a good approximation to the surface $z=x^{2}+3 x y-y^{2}$ near $(2,3,13)$.

DIFFERENTIALS

Example 5

The base radius and height of a right circular cone are measured as 10 cm and 25 cm , respectively, with a possible error in measurement of as much as 0.1 cm in each.

- Use differentials to estimate the maximum error in the calculated volume of the cone.

DIFFERENTIALS

Example 5

The volume V of a cone with base radius r and height h is $V=\pi r^{2} h / 3$.

So, the differential of V is:

$$
d V=\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h=\frac{2 \pi r h}{3} d r+\frac{\pi r^{2}}{3} d h
$$

DIFFERENTIALS

Example 5

Each error is at most 0.1 cm .

So, we have:

$$
|\Delta r| \leq 0.1
$$

$$
|\Delta h| \leq 0.1
$$

DIFFERENTIALS
Example 5
That gives:

$$
\begin{aligned}
d V & =\frac{500 \pi}{3}(0.1)+\frac{100 \pi}{3}(0.1) \\
& =20 \pi
\end{aligned}
$$

- So, the maximum error in the calculated volume is about $20 \pi \mathrm{~cm}^{3} \approx 63 \mathrm{~cm}^{3}$.

FUNCTIONS OF THREE OR MORE VARIABLES
The differential $d w$ is defined in terms of the differentials $d x, d y$, and $d z$ of the independent variables by:

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z
$$

MULTIPLE VARIABLE FUNCTIONS Example 6
The dimensions of a rectangular box are measured to be $75 \mathrm{~cm}, 60 \mathrm{~cm}$, and 40 cm , and each measurement is correct to within 0.2 cm .

- Use differentials to estimate the largest possible error when the volume of the box is calculated from these measurements.

MULTIPLE VARIABLE FUNCTIONS Example 6

If the dimensions of the box are x, y, and z, its volume is $V=x y z$.

Thus,

$$
\begin{aligned}
d V & =\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial z} d z \\
& =y z d x+x z d y+x y d z
\end{aligned}
$$

MULTIPLE VARIABLE FUNCTIONS Example 6
Thus,

$$
\begin{aligned}
\Delta V & \approx d V \\
& =(60)(40)(0.2)+(75)(40)(0.2) \\
& +(75)(60)(0.2) \\
& =1980
\end{aligned}
$$

MULTIPLE VARIABLE FUNCTIONS Example 6
We are given that

$$
|\Delta x| \leq 0.2,|\Delta y| \leq 0.2,|\Delta z| \leq 0.2
$$

- To find the largest error in the volume, we use
together with

$$
d x=0.2, d y=0.2, d z=0.2
$$

$$
x=75, y=60, z=40
$$

MULTIPLE VARIABLE FUNCTIONS Example 6
So, an error of only 0.2 cm in measuring each dimension could lead to an error of as much as $1980 \mathrm{~cm}^{3}$ in the calculated volume.

- This may seem like a large error.
- However, it's only about 1\% of the volume of the box.

