PARTIAL DERIVATIVES

15.4

Tangent Planes and Linear Approximations

In this section, we will learn how to: Approximate functions using tangent planes and linear functions.

TANGENT PLANES

Suppose a surface *S* has equation z = f(x, y), where *f* has continuous first partial derivatives.

Let $P(x_0, y_0, z_0)$ be a point on *S*.

TANGENT PLANESEquation 2Suppose *f* has continuous partial derivatives.

An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is:

 $Z - Z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

TANGENT PLANESExample 1Find the tangent plane to the ellipticparaboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).• Let $f(x, y) = 2x^2 + y^2$.• Then, $f_x(x, y) = 4x$ $f_y(x, y) = 2y$ $f_y(1, 1) = 4$ $f_y(1, 1) = 2$

TANGENT PLANES

 So, Equation 2 gives the equation of the tangent plane at (1, 1, 3) as:

$$z - 3 = 4(x - 1) + 2(y - 1)$$

Example 1

or

$$z = 4x + 2y - 3$$

TANGENT PLANES The figure shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found in Example 1.

LINEAR APPROXIMATIONS

In Example 1, we found that an equation of the tangent plane to the graph of the function $f(x, y) = 2x^2 + y^2$ at the point (1, 1, 3) is:

$$z = 4x + 2y - 3$$

LINEAR APPROXIMATIONS

Thus, in view of the visual evidence in the previous two figures, the linear function of two variables

$$L(x, y) = 4x + 2y - 3$$

is a good approximation to f(x, y)when (x, y) is near (1, 1).

LINEARIZATION & LINEAR APPROXIMATION The function *L* is called the linearization of f at (1, 1).

The approximation

 $f(x, y) \approx 4x + 2y - 3$ is called the linear approximation or tangent plane approximation of *f* at (1, 1).

LINEAR APPROXIMATIONS

For instance, at the point (1.1, 0.95), the linear approximation gives:

f(1.1, 0.95) $\approx 4(1.1) + 2(0.95) - 3$ = 3.3

 This is quite close to the true value of f(1.1, 0.95) = 2(1.1)² + (0.95)² = 3.3225

LINEAR APPROXIMATIONS

However, if we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approximation.

• In fact, L(2, 3) = 11, whereas f(2, 3) = 17.

LINEAR APPROXIMATIONS

In general, we know from Equation 2 that an equation of the tangent plane to the graph of a function f of two variables at the point (a, b, f(a, b)) is:

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

LINEARIZATION Equation 3 The linear function whose graph is this tangent plane, namely

> $L(x, y) = f(a, b) + f_x(a, b)(x - a)$ $+ f_y(a, b)(y - b)$

is called the linearization of f at (a, b).

LINEAR APPROXIMATIONEquation 4The approximation
$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a)$$

 $+ f_y(a, b)(y - b)$ is called the linear approximation or
the tangent plane approximation of f at (a, b) .

LINEAR APPROXIMATIONS Theorem 8 If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then *f* is differentiable at (a, b). **LINEAR APPROXIMATIONS Example 2** Show that $f(x, y) = xe^{xy}$ is differentiable at (1, 0) and find its linearization there.

Then, use it to approximate f(1.1, -0.1).

LINEAR APPROXIMATIONSExample 2The partial derivatives are:
$$f_x(x, y) = e^{xy} + xye^{xy}$$
 $f_y(x, y) = x^2e^{xy}$ $f_x(1, 0) = 1$ $f_y(1, 0) = 1$

• Both f_x and f_y are continuous functions.

• So, f is differentiable by Theorem 8.

LINEAR APPROXIMATIONSExample 2The corresponding linear approximation
is: $xe^{xy} \approx x + y$ So, $f(1.1, -0.1) \approx 1.1 - 0.1 = 1$ • Compare this with the actual value
of
 $f(1.1, -0.1) = 1.1e^{-0.11} \approx 0.98542$

DIFFERENTIALS

For a differentiable function of one variable, y = f(x), we define the differential dx to be an independent variable.

• That is, *dx* can be given the value of any real number.

DIFFERENTIALSEquation 9Then, the differential of y is definedas:

$$dy = f'(x) dx$$

See Section 3.10

DIFFERENTIALS

For a differentiable function of two variables, z = f(x, y), we define the differentials dx and dy to be independent variables.

• That is, they can be given any values.

$$dz = f_x(x, y) dx + f_y(x, y) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

- Compare with Equation 9.
- Sometimes, the notation *df* is used in place of *dz*.

DIFFERENTIALS

If we take $dx = \Delta x = x - a$ and $dy = \Delta y = y - b$ in Equation 10, then the differential of *z* is:

$$dz = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

• So, in the notation of differentials, the linear approximation in Equation 4 can be written as: $f(x, y) \approx f(a, b) + dz$

DIFFERENTIALS

a. If $z = f(x, y) = x^2 + 3xy - y^2$, find the differential *dz*.

b. If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare Δz and dz.

Example 4

DIFFERENTIALS Example 4 a
Definition 10 gives:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
$$= (2x + 3y) dx + (3x - 2y) dy$$

DIFFERENTIALS	Example 4 b
Putting $x = 2$, $dx = \Delta x = 0.05$, we get:	$y = 3, dy = \Delta y = -0.04,$
dz = [2(2) + 3(3)]0.05 = 0.65	+ [3(2) – 2(3)](–0.04)

DIFFERENTIALS

Example 5

The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in each.

• Use differentials to estimate the maximum error in the calculated volume of the cone.

DIFFERENTIALSExample 5The volume V of a cone with base radius r
and height h is
$$V = \pi r^2 h/3$$
.So, the differential of V is: $dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial h} dh = \frac{2\pi r h}{3} dr + \frac{\pi r^2}{3} dh$

Г

DIFFERENTIALSExample 5Each error is at most 0.1 cm.So, we have:
$$|\Delta r| \leq 0.1$$
 $|\Delta h| \leq 0.1$

DIFFERENTIALSExample 5To find the largest error in the volume,we take the largest error in the measurementof
$$r$$
 and of h .• Therefore, we take $dr = 0.1$ and $dh = 0.1$ along with $r = 10$, $h = 25$.

FUNCTIONS OF THREE OR MORE VARIABLES The differential dw is defined in terms of the differentials dx, dy, and dz of the independent variables by:

$$dw = \frac{\partial w}{\partial x}dx + \frac{\partial w}{\partial y}dy + \frac{\partial w}{\partial z}dz$$

MULTIPLE VARIABLE FUNCTIONS Example 6 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and 40 cm, and each measurement is correct to within 0.2 cm.

• Use differentials to estimate the largest possible error when the volume of the box is calculated from these measurements.

MULTIPLE VARIABLE FUNCTIONS Example 6 If the dimensions of the box are *x*, *y*, and *z*, its volume is V = xyz.

Thus,

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz$$
$$= yz \, dx + xz \, dy + xy \, dz$$

MULTIPLE VARIABLE FUNCTIONS Example 6 Thus,

$$\Delta V \approx dV$$

= (60)(40)(0.2) + (75)(40)(0.2)
+ (75)(60)(0.2)
= 1980

MULTIPLE VARIABLE FUNCTIONS Example 6 So, an error of only 0.2 cm in measuring each dimension could lead to an error of as much as 1980 cm³ in the calculated volume.

- This may seem like a large error.
- However, it's only about 1% of the volume of the box.