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15.4

Tangent Planes and 

Linear Approximations

PARTIAL DERIVATIVES

In this section, we will learn how to:

Approximate functions using 

tangent planes and linear functions.

TANGENT PLANES

Suppose a surface S has equation z = f(x, y), 

where f has continuous first partial derivatives.

Let P(x0, y0, z0) be a point on S.

TANGENT PLANES

Suppose f has continuous partial derivatives. 

An equation of the tangent plane to the 

surface z = f(x, y) at the point P(x0, y0, z0) 

is:

z – z0 = fx(x0, y0)(x – x0) + fy(x0, y0)(y – y0) 

Equation 2 TANGENT PLANES

Find the tangent plane to the elliptic 

paraboloid z = 2x2 + y2 at the point (1, 1, 3).

� Let f(x, y) = 2x2 + y2.

� Then, 

fx(x, y) = 4x fy(x, y) = 2y 

fx(1, 1) = 4       fy(1, 1) = 2  

Example 1

TANGENT PLANES

� So, Equation 2 gives the equation 
of the tangent plane at (1, 1, 3) as: 

z – 3 = 4(x – 1) + 2(y – 1) 

or 

z = 4x + 2y – 3

Example 1 TANGENT PLANES

The figure shows the elliptic paraboloid 

and its tangent plane at (1, 1, 3) that we 

found in Example 1. 
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LINEAR APPROXIMATIONS

In Example 1, we found that an equation of 

the tangent plane to the graph of the function 

f(x, y) = 2x2 + y2 at  the point (1, 1, 3) is: 

z = 4x + 2y – 3

LINEAR APPROXIMATIONS

Thus, in view of the visual evidence in 

the previous two figures, the linear function 

of two variables

L(x, y) = 4x + 2y – 3

is a good approximation to f(x, y) 

when (x, y) is near (1, 1).

LINEARIZATION & LINEAR APPROXIMATION

The function L is called the linearization of f 

at (1, 1).

The approximation 

f(x, y) ≈ 4x + 2y – 3 

is called the linear approximation or tangent 

plane approximation of f at (1, 1). 

LINEAR APPROXIMATIONS

For instance, at the point (1.1, 0.95), the linear 

approximation gives: 

f(1.1, 0.95) 

≈ 4(1.1) + 2(0.95) – 3 

= 3.3

� This is quite close to the true value 
of f(1.1, 0.95) = 2(1.1)2 + (0.95)2 = 3.3225

LINEAR APPROXIMATIONS

However, if we take a point farther away 

from (1, 1), such as (2, 3), we no longer get 

a good approximation. 

� In fact, L(2, 3) = 11, whereas f(2, 3) = 17. 

LINEAR APPROXIMATIONS

In general, we know from Equation 2 that 

an equation of the tangent plane to the graph 

of a function f of two variables at the point 

(a, b, f(a, b)) is:

z = f(a, b) + fx(a, b)(x – a) + fy(a, b)(y – b)
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LINEARIZATION

The linear function whose graph is 

this tangent plane, namely

L(x, y) = f(a, b) + fx(a, b)(x – a) 

+ fy(a, b)(y – b)

is called the linearization of f at (a, b).

Equation 3 LINEAR APPROXIMATION

The approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x – a) 

+ fy(a, b)(y – b)

is called the linear approximation or 

the tangent plane approximation of f at (a, b).

Equation 4

LINEAR APPROXIMATIONS

If the partial derivatives fx and fy exist 

near (a, b) and are continuous at (a, b), 

then f is differentiable at (a, b).

Theorem 8 LINEAR APPROXIMATIONS

Show that f(x, y) = xexy is differentiable 

at (1, 0) and find its linearization there. 

Then, use it to approximate f(1.1, –0.1). 

Example 2

LINEAR APPROXIMATIONS

The partial derivatives are:

fx(x, y) = exy + xyexy fy(x, y) = x2exy

fx(1, 0) = 1 fy(1, 0) = 1

� Both fx and fy are continuous functions.

� So, f is differentiable by Theorem 8.

Example 2 LINEAR APPROXIMATIONS

The linearization is: 

L(x, y) = f(1, 0) + fx(1, 0)(x – 1) + fy(1, 0)(y – 0)

= 1 + 1(x – 1) + 1 . y

= x + y

Example 2
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LINEAR APPROXIMATIONS

The corresponding linear approximation 

is:

xexy ≈ x + y

So,

f(1.1, – 0.1) ≈ 1.1 – 0.1 = 1

� Compare this with the actual value 
of 

f(1.1, –0.1) = 1.1e–0.11 ≈ 0.98542

Example 2 DIFFERENTIALS

For a differentiable function of one variable, 

y = f(x), we define the differential dx to be 

an independent variable.

� That is, dx can be given the value 
of any real number.

DIFFERENTIALS

Then, the differential of y is defined 

as: 

dy = f’(x) dx

� See Section 3.10

Equation 9 DIFFERENTIALS

The figure shows the 

relationship between 

the increment ∆y and 

the differential dy.

DIFFERENTIALS

∆y represents the change in height of 

the curve y = f(x).

dy represents the change in height of 

the tangent line 

when x changes 

by an amount 

dx = ∆x.

DIFFERENTIALS

For a differentiable function of two variables, 

z = f(x, y), we define the differentials dx and 

dy to be independent variables. 

� That is, they can be given any values. 
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TOTAL DIFFERENTIAL

Then the differential dz, also called 

the total differential, is defined by:

� Compare with Equation 9.

� Sometimes, the notation df is used in place of dz.

( , ) ( , )x y

z z
dz f x y dx f x y dy dx dy

x y

∂ ∂
= + = +

∂ ∂

Equation 10 DIFFERENTIALS

If we take dx = ∆x = x – a and dy = ∆y = y – b

in Equation 10, then the differential of z

is:

dz = fx(a, b)(x – a) + fy(a, b)(y – b)

� So, in the notation of differentials, the linear 
approximation in Equation 4 can be written as:

f(x, y) ≈ f(a, b) + dz

DIFFERENTIALS

The figure is the three-dimensional 

counterpart of the previous figure.

DIFFERENTIALS

It shows the geometric interpretation of 

the differential dz and the increment ∆z.

DIFFERENTIALS

dz is the change in height of the tangent 

plane.

DIFFERENTIALS

∆z represents the change in height of 

the surface z = f(x, y) when (x, y) changes 

from (a, b) to (a + ∆x, b + ∆y).
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DIFFERENTIALS

a. If z = f(x, y) = x2 + 3xy – y2, find 

the differential dz.

b. If x changes from 2 to 2.05 and y changes 

from 3 to 2.96, compare ∆z and dz.

Example 4 DIFFERENTIALS

Definition 10 gives:

Example 4 a

(2 3 ) (3 2 )

z z
dz dx dy

x y

x y dx x y dy

∂ ∂
= +

∂ ∂

= + + −

DIFFERENTIALS

Putting 

x = 2, dx = ∆x = 0.05, y = 3, dy = ∆y = –0.04, 

we get:

dz = [2(2) + 3(3)]0.05 + [3(2) – 2(3)](–0.04) 

= 0.65

Example 4 b DIFFERENTIALS

The increment of z is:

∆z = f(2.05, 2.96) – f(2, 3)

= [(2.05)2 + 3(2.05)(2.96) – (2.96)2] 

– [22 + 3(2)(3) – 32]

= 0.6449

� Notice that ∆z ≈ dz, but dz is easier to compute.

Example 4 b

DIFFERENTIALS

In Example 4, dz is close to ∆z because 

the tangent plane is a good approximation 

to the surface z = x2 + 3xy – y2 near (2, 3, 13).

DIFFERENTIALS

The base radius and height of a right circular 

cone are measured as 10 cm and 25 cm,  

respectively, with a possible error in 

measurement of as much as 0.1 cm in each. 

� Use differentials to estimate the maximum error 

in the calculated volume of the cone.

Example 5
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DIFFERENTIALS

The volume V of a cone with base radius r

and height h is V = πr2h/3. 

So, the differential of V is:  

2
2

3 3

π π∂ ∂
= + = +

∂ ∂

V V rh r
dV dr dh dr dh

r h

Example 5 DIFFERENTIALS

Each error is at most 0.1 cm.

So, we have: 

|∆r| ≤ 0.1

|∆h| ≤ 0.1

Example 5

DIFFERENTIALS

To find the largest error in the volume, 

we take the largest error in the measurement 

of r and of h.

� Therefore, we take dr = 0.1 and dh = 0.1 
along with r = 10, h = 25. 

Example 5 DIFFERENTIALS

That gives:

� So, the maximum error in the calculated 
volume is about 20π cm3 ≈ 63 cm3.

500 100
(0.1) (0.1)

3 3

20

dV
π π

π

= +

=

Example 5

FUNCTIONS OF THREE OR MORE VARIABLES

The differential dw is defined in terms of the 

differentials dx, dy, and dz of the independent 

variables by:

w w w
dw dx dy dz

x y z

∂ ∂ ∂
= + +

∂ ∂ ∂

MULTIPLE VARIABLE FUNCTIONS

The dimensions of a rectangular box are 

measured to be 75 cm, 60 cm, and 40 cm, 

and each measurement is correct to within 

0.2 cm. 

� Use differentials to estimate the largest possible 

error when the volume of the box is calculated 
from these measurements. 

Example 6
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MULTIPLE VARIABLE FUNCTIONS

If the dimensions of the box are x, y, and z, 

its volume is V = xyz.

Thus, 
∂ ∂ ∂

= + +
∂ ∂ ∂

= + +

V V V
dV dx dy dz

x y z

yz dx xz dy xy dz

Example 6 MULTIPLE VARIABLE FUNCTIONS

We are given that 

|∆x| ≤ 0.2, |∆y| ≤ 0.2, |∆z| ≤ 0.2

� To find the largest error in the volume, 
we use 

dx = 0.2, dy = 0.2, dz = 0.2 
together with 

x = 75, y = 60, z = 40

Example 6

MULTIPLE VARIABLE FUNCTIONS

Thus, 

∆V ≈ dV

= (60)(40)(0.2) + (75)(40)(0.2) 

+ (75)(60)(0.2) 

= 1980

Example 6 MULTIPLE VARIABLE FUNCTIONS

So, an error of only 0.2 cm in measuring each 

dimension could lead to an error of as much 

as 1980 cm3 in the calculated volume. 

� This may seem like a large error. 

� However, it’s only about 1% of the volume 
of the box. 

Example 6


