PARTIAL DERIVATIVES

15.4
Tangent Planes and
Linear Approximations
In this section, we will learn how to:

Approximate functions using

tangent planes and linear functions.

TANGENT PLANES
Suppose a surface S has equation z= f(x, y),
where fhas continuous first partial derivatives.

Let P(Xy, Yo, Z,) be a point on S.

TANGENT PLANES Equation 2

Suppose fhas continuous partial derivatives.

An equation of the tangent plane to the
surface z = f(x, y) at the point P(x,, Vo, Z)
is:

z =2y = £Xo, Yo) (X = Xo) + £,(X0, Y)Y — Yo)

TANGENT PLANES Example 1
Find the tangent plane to the elliptic
paraboloid z = 2x% + y? at the point (1, 1, 3).

= Let flx, y) = 2x% + 2.

= Then,
fdx, y) = 4x 1(x, y) =2y

TANGENT PLANES Example 1

= So, Equation 2 gives the equation
of the tangent plane at (1, 1, 3) as:

z—-3=4(x—-1)+2(y—1)

or
z=4x+2y—3

TANGENT PLANES
The figure shows the elliptic paraboloid
and its tangent plane at (1, 1, 3) that we
found in Example 1.




LINEAR APPROXIMATIONS
In Example 1, we found that an equation of
the tangent plane to the graph of the function
fix, y) = 2x% + y? at the point (1, 1, 3) is:

Z=4x+2y-3

LINEAR APPROXIMATIONS
Thus, in view of the visual evidence in

the previous two figures, the linear function
of two variables

L(x,y)=4x+2y—3

is a good approximation to f(x, y)
when (x, y) is near (1, 1).

LINEARIZATION & LINEAR APPROXIMATION
The function L is called the linearization of f
at (1, 1).

The approximation

fix,y)=4x+2y—3
is called the linear approximation or tangent
plane approximation of fat (1, 1).

LINEAR APPROXIMATIONS
For instance, at the point (1.1, 0.95), the linear
approximation gives:

f(1.1, 0.95)

=4(1.1) + 2(0.95) - 3

=3.3

= This is quite close to the true value
of f(1.1, 0.95) = 2(1.1)? + (0.95)? = 3.3225

LINEAR APPROXIMATIONS
However, if we take a point farther away
from (1, 1), such as (2, 3), we no longer get
a good approximation.

= In fact, L(2, 3) = 11, whereas f(2, 3) = 17.

LINEAR APPROXIMATIONS
In general, we know from Equation 2 that
an equation of the tangent plane to the graph
of a function f of two variables at the point

(a, b, fla, b)) is:

z=fa, b) + f(a, b)(x— a) + f(a, b)(y — b)




LINEARIZATION Equation 3
The linear function whose graph is
this tangent plane, namely

L(x, y) = f(a, b) + f(a, b)(x— a)
+f(a, b)(y—b)

is called the linearization of fat (a, b).

LINEAR APPROXIMATION Equation 4
The approximation

f(x, y) = f(a, b) + f(a, b)(x— a)
+f(a, b)(y—b)

is called the linear approximation or
the tangent plane approximation of fat (a, b).

LINEAR APPROXIMATIONS Theorem 8

If the partial derivatives f, and f, exist
near (a, b) and are continuous at (a, b),
then fis differentiable at (a, b).

LINEAR APPROXIMATIONS Example 2
Show that f(x, y) = xe¥ is differentiable
at (1, 0) and find its linearization there.

Then, use it to approximate f(1.1, —0.1).

LINEAR APPROXIMATIONS Example 2
The partial derivatives are:

A,
f(1,

f(x, y) = &Y+ xye¥

y) = x*e¥
£(1,0) =1 0

)=1

= Both f, and f, are continuous functions.
= So, fis differentiable by Theorem 8.

LINEAR APPROXIMATIONS Example 2

The linearization is:

L(x, y) = f(1, 0) + £(1, 0)(x = 1) + £(1, 0)(y = 0)
=1+1(x=1)+1-y

=X+y




LINEAR APPROXIMATIONS

Example 2

The corresponding linear approximation

is:

xev=x+y

So,

f1.1,-0.1)=1.1-0.1 =1

= Compare this with the actual value

of

f(1.1,-0.1) = 1.1e1" = 0.98542

DIFFERENTIALS
For a differentiable function of one variable,
y = f(x), we define the differential dx to be
an independent variable.

= That is, dx can be given the value
of any real number.

DIFFERENTIALS

Equation 9

Then, the differential of y is defined

as:

dy = f(x) dx

= See Section 3.10

DIFFERENTIALS

The figure shows the
relationship between
the increment Ay and

the differential dy.

dy

dx=Ax

0 \ a a+Ax X

tangent line

DIFFERENTIALS

Ay represents the change in height of

the curve y = f(x).

dy represents the change in height of

the tangent line
when x changes
by an amount
dx = Ax.

0 \\ a a+Ax
tangent line
y=fla)+ f'(a)x—a)

DIFFERENTIALS
For a differentiable function of two variables,
z = f(x, y), we define the differentials dx and
dy to be independent variables.

= That is, they can be given any values.




TOTAL DIFFERENTIAL Equation 10
Then the differential dz, also called
the total differential, is defined by:

o) )
dz=f.(x,y)dx+ f,(x,y)dy =E i+ Zay
ox dy

= Compare with Equation 9.

= Sometimes, the notation df is used in place of dz.

DIFFERENTIALS

If we take dx=Ax=x—aanddy=Ay=y—-b
in Equation 10, then the differential of z

is:

dz = f(a, b)(x—a) + f,(a, b)(y - b)

= So, in the notation of differentials, the linear
approximation in Equation 4 can be written as:

f(x, y) = fla, b) + dz

DIFFERENTIALS
The figure is the three-dimensional
counterpart of the previous figure.

(a+Axb+ Ay, fla+Ax b+ Ay)

surface z = fix.y)

a.b. flat. b)) _ L’

tangent plane
2= fla,b)= f.la,biix—a) + f,la,b)ly — b)

DIFFERENTIALS
It shows the geometric interpretation of
the differential dz and the increment Az.

(a+Axb+ Ay, fla+Ax b+ Ay)

surface z = fix.y)

fa.b. Fla. b)) _ ¢

tangent plane
2= fla,b)= f.la,biix—a) + f,la,b)ly — b)

DIFFERENTIALS
dzis the change in height of the tangent
plane.

(a+Ax,b+ 4y, fla+Ax,b+Ay)
surface 2 = f(x, y)

@b, fla. b)) _

tangent plane
z— fla.b)= f,la, biix —a) + f {a. b)ly — b)

DIFFERENTIALS

Az represents the change in height of

the surface z = f(x, y) when (x, y) changes
from (a, b) to (a + Ax, b + Ay).

(a+Ax,b+ 4y, [la+Ax,b+Ay)

surface 2= fix,y)

@b, fla. b)) _

tangent plane
z— fla.b)= f,la, biix —a) + f {a. b)ly — b)




DIFFERENTIALS Example 4
a.lf z=f(x, y) = x> + 3xy — ), find
the differential dz.

b. If x changes from 2 to 2.05 and y changes
from 3 to 2.96, compare Az and dz.

DIFFERENTIALS Example 4 a
Definition 10 gives:

0z 0z
dz =—dx+—d
¢ ox x+ay Y

=2x+3y)dx+Bx—-2y)dy

DIFFERENTIALS Example 4 b

Putting
X=2,dx=Ax=0.05y=3,dy=Ay=-0.04,
we get:

dz =[2(2) + 3(3)]0.05 + [3(2) — 2(3)](~0.04)
-0.65

DIFFERENTIALS Example 4 b
The increment of zis:
Az = 1(2.05, 2.96) — f(2, 3)
=[(2.05)? + 3(2.05)(2.96) — (2.96)?]
—[22+3(2)(3) - 37
= 0.6449

= Notice that Az= dz, but dzis easier to compute.

DIFFERENTIALS
In Example 4, dzis close to Az because
the tangent plane is a good approximation

to the surface z= X2 + 3xy — )2 near (2, 3, 13).

DIFFERENTIALS Example 5
The base radius and height of a right circular
cone are measured as 10 cm and 25 cm,
respectively, with a possible error in
measurement of as much as 0.1 cm in each.

= Use differentials to estimate the maximum error
in the calculated volume of the cone.




DIFFERENTIALS Example 5
The volume V of a cone with base radius r
and height his V = mrPh/3.

So, the differential of Vis:

2
av =2 g+ Y gy = 2R T
or oh

dh

DIFFERENTIALS Example 5
Each error is at most 0.1 cm.

DIFFERENTIALS Example 5
To find the largest error in the volume,

we take the largest error in the measurement
of rand of h.

= Therefore, we take dr= 0.1 and dh = 0.1
along with r=10, h=25.

So, we have:
|Ar < 0.1
|Ah] < 0.1
DIFFERENTIALS Example 5
That gives:
5007 100z

dV =—(0.D)+——(0.1
=207

= So, the maximum error in the calculated
volume is about 2077 cm?® = 63 cm?.

FUNCTIONS OF THREE OR MORE VARIABLES
The differential dw is defined in terms of the
differentials dx, dy, and dz of the independent
variables by:

ow ow ow

dw=—dx+—dy+—d
v ox g dy Y 0z ¢

MULTIPLE VARIABLE FUNCTIONS Example 6
The dimensions of a rectangular box are
measured to be 75 cm, 60 cm, and 40 cm,
and each measurement is correct to within
0.2 cm.

= Use differentials to estimate the largest possible
error when the volume of the box is calculated
from these measurements.




MULTIPLE VARIABLE FUNCTIONS Example 6
If the dimensions of the box are x, y, and z,
its volume is V = xyz.

Thus,
dv za—vdx+a—vdy+a—vdz
ox dy 0z

=yzdx+xzdy+xydz

MULTIPLE VARIABLE FUNCTIONS Example 6

We are given that
|Ax| £0.2,|Ay|£0.2,]AZ 0.2

= To find the largest error in the volume,

we use
dx=0.2,dy=0.2,dz=0.2

together with
x=75,y=60,z=40

MULTIPLE VARIABLE FUNCTIONS Example 6

Thus,

AV=dV
= (60)(40)(0.2) + (75)(40)(0.2)
+ (75)(60)(0.2)

= 1980

MULTIPLE VARIABLE FUNCTIONS Example 6
So, an error of only 0.2 cm in measuring each
dimension could lead to an error of as much
as 1980 cm?® in the calculated volume.

= This may seem like a large error.

= However, it's only about 1% of the volume
of the box.




