Chapter 2: The Basic Concepts of Set Theory

2.1 Symbols and Terminology
2.2 Venn Diagrams and Subsets
2.3 Set Operations and Cartesian Products
2.4 Surveys and Cardinal Numbers
Section 2-1
Symbols and Terminology

Symbols and Terminology

- Designating Sets
- Sets of Numbers and Cardinality
- Finite and Infinite Sets
- Equality of Sets
A set is a collection of objects. The objects belonging to the set are called the elements, or members of the set.

Sets are designated using:

1) word description,
2) the listing method, and
3) set-builder notation.

Word description
The set of even counting numbers less than 10

The listing method
{2, 4, 6, 8}

Set-builder notation
{x | x is an even counting number less than 10}
Designating Sets

Sets are commonly given names (capital letters).
\[A = \{1, 2, 3, 4\} \]

The set containing no elements is called the **empty set** (*null set*) and denoted by \(\{\} \) or \(\emptyset \).

To show 2 is an element of set \(A \) use the symbol \(\in \).
\[2 \in \{1, 2, 3, 4\} \]
\[a \notin \{1, 2, 3, 4\} \]

Example: Listing Elements of Sets

Give a complete listing of all of the elements of the set \(\{x | x \text{ is a natural number between 3 and 8}\} \)

Solution
\[\{4, 5, 6, 7\} \]
Sets of Numbers

Natural (counting) \{1, 2, 3, 4, \ldots\}
Whole numbers \{0, 1, 2, 3, 4, \ldots\}
Integers \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}

Rational numbers \left\{ \frac{p}{q} \mid p \text{ and } q \text{ are integers, with } q \neq 0 \right\}

May be written as a terminating decimal, like 0.25, or a repeating decimal like 0.333…

Irrational \{x \mid x \text{ is not expressible as a quotient of integers}\}

Decimal representations never terminate and never repeat.

Real numbers \{x \mid x \text{ can be expressed as a decimal}\}

Cardinality

The number of elements in a set is called the cardinal number, or cardinality of the set.

The symbol \(n(A) \), read “\(n \) of \(A \),” represents the cardinal number of set \(A \).
Example: Cardinality

Find the cardinal number of each set.

a) \(K = \{ a, l, g, e, b, r \} \)
b) \(M = \{ 2 \} \)
c) \(\emptyset \)

Solution

a) \(n(K) = 6 \)
b) \(n(M) = 1 \)
c) \(n(\emptyset) = 0 \)

Finite and Infinite Sets

If the cardinal number of a set is a particular whole number, we call that set a finite set.

Whenever a set is so large that its cardinal number is not found among the whole numbers, we call that set an infinite set.
Example: Infinite Set

The odd counting numbers are an infinite set.

Word description
The set of all odd counting numbers

Listing method
{1, 3, 5, 7, 9, …}

Set-builder notation
{x | x is an odd counting number}

Equality of Sets

Set A is equal to set B provided the following two conditions are met:

1. Every element of A is an element of B, and
2. Every element of B is an element of A.
Example: Equality of Sets

State whether the sets in each pair are equal.

a) \{a, b, c, d\} and \{a, c, d, b\}

b) \{2, 4, 6\} and \{x| x is an even number\}

Solution

a) Yes, order of elements does not matter

b) No, \{2, 4, 6\} does not represent all the even numbers.