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Chapter 6:
The Mathematics 

of Touring

6.3 The Brute-Force 
Algorithm
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In this section we will look at the two strategies we 

informally developed in connection with Willy’s sales 

trips and recast them in the language of algorithms. The

“exhaustive search” strategy can be formalized into an

algorithm generally known as the brute-force 

algorithm; the “go cheap” strategy can be formalized 

into an algorithm known as the nearest-neighbor 

algorithm.

Algorithms for Solving TSP’s
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■ Step 1. Make a list of all the possible Hamilton 

circuits of the graph. Each of these circuits 

represents a tour of the vertices of the graph.■ Step 2. For each tour calculate its weight (i.e., 

add the weights of all the edges in the circuit).■ Step 3. Choose an optimal tour (there is 

always more than one optimal tour to choose 

from!). 

ALGORITHM 1: THE BRUTE 
FORCE ALGORITHM
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The positive aspect of the brute-force algorithm is 

that it is an optimal algorithm. (An optimal algorithm is

an algorithm that, when correctly implemented, is 

guaranteed to produce an optimal solution.) In the 

case of the brute-force algorithm, we know we are 

getting an optimal solution because we are choosing

from among all possible tours.

Pros and Cons
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The negative aspect of the brute-force algorithm is 

the amount of effort that goes into implementing the 

algorithm, which is (roughly) proportional to the 

number of Hamilton circuits in the graph. As we first 

saw in Table 6-4 in the text, as the number of vertices 
grows just a little, the number of Hamilton circuits in a 
complete graph grows at an incredibly fast rate. 

Pros and Cons
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What does this mean in practical terms? Let’s start 

with human computation. To solve a TSP for a graph 

with 10 vertices (as real-life problems go, that’s puny), 

the brute-force algorithm requires checking 362,880 

Hamilton circuits. To do this by hand, even for a fast 

and clever human, it would take over 1000 hours. 

Thus, N =10 at we are already beyond the limit of 

what can be considered reasonable human effort. 

Practical Terms of the Pros and Cons



10/25/2013

2

Excursions in Modern Mathematics, 7e: 1.1 - 7Copyright © 2010 Pearson Education, Inc.Copyright © 2014  Pearson Education. All rights reserved. 6.3-7

Even with the world’s best 

technology on our side, we 

very quickly reach the point 

beyond which using the brute-

force algorithm is completely 

unrealistic.

Using a Computer
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The brute-force algorithm is a classic example of what 

is formally known as an inefficient algorithm–an 

algorithm for which the number of steps needed to 

carry it out grows disproportionately with the size of the 

problem. The trouble with inefficient algorithms is that 

they are of limited practical use–they can realistically 

be carried out only when the problem is small.

Using a Computer
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We hop from vertex to vertex using a simple criterion: 

Choose the next available “nearest” vertex and go for 

it. Let’s call the process of checking among the 

available vertices and finding the nearest one a single 

computation. Then, for a TSP with N = 5 we need to 

perform 5 computations. What happens when we 

double, the number of vertices to N = 10? We now 

have to perform 10 computations. For N = 30, we 

perform 30 computations.

Pros and Cons - Nearest Neighbor
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We can summarize the above observations by saying 

that the nearest-neighbor algorithm is an efficient 

algorithm. Roughly speaking, an efficient algorithm is 

an algorithm for which the amount of computational 

effort required to implement the algorithm grows in 

some reasonable proportion with the size of the input 

to the problem.

Pros and Cons - Nearest Neighbor
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The main problem with the nearest-neighbor algorithm 

is that it is not an optimal algorithm. In Example 6.1, the 

nearest-neighbor tour had a cost of $773, whereas the 

optimal tour had a cost of $676. In absolute terms the 

nearest-neighbor tour is off by $97 (this is called the 

absolute error). A better way to describe how far “off” 

this tour is from the optimal tour is to use the concept of 

relative error. In this example the absolute error is $97 

out of $676, giving a relative error of $97/$676 = 

0.1434911 ≈ 14.35%.

Pros and Cons - Nearest Neighbor

Excursions in Modern Mathematics, 7e: 1.1 - 12Copyright © 2010 Pearson Education, Inc.Copyright © 2014  Pearson Education. All rights reserved. 6.3-12

In general, for any tour that might be proposed as a

“solution” to a TSP, we can find its relative error ε as 

follows:

RELATIVE ERROR 
OF A TOUR (e)

 
ε =

cost of tour −  cost of optimal tour( )
cost of optimal tour
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It is customary to express the relative error as a 

percentage (usually rounded to two decimal places). 

By using the notion of relative error, we can 

characterize the optimal tours as those with relative 

error of 0%. All other tours give “approximate 

solutions,” the relative merits of which we can judge 

by their respective relative errors: tours with “small” 

relative errors are good, and tours with “large”
relative errors are not good. 

Relative Error - Good or Not Good
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Chapter 6:
The Mathematics 

of Touring

6.4 The Nearest-Neighbor 
and Repetitive Nearest-
Neighbor Algorithms
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■ Start: Start at the designated starting 
vertex. If there is no designated starting 
vertex pick any vertex.■ First step: From the starting vertex go to its 
nearest neighbor (i.e., the vertex for 
which the corresponding edge has the 
smallest weight).

ALGORITHM 2: THE NEAREST 
NEIGHBOR ALGORITHM
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■ Middle steps: From each vertex go to its 
nearest neighbor, choosing only among 
the vertices that haven’t been yet visited. 
(If there is more than one nearest neighbor 
choose among them at random.) Keep 
doing this until all the vertices have been 
visited.■ Last step: From the last vertex return to the 
starting vertex.

ALGORITHM 2: THE NEAREST 
NEIGHBOR ALGORITHM
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As one might guess, the repetitive nearest-neighbor 

algorithm is a variation of the nearest-neighbor 

algorithm in which we repeat several times the entire

nearest- neighbor circuit-building process. Why would 

we want to do this? The reason is that the nearest-

neighbor tour depends on the choice of the starting 

vertex. If we change the starting vertex, the nearest-

neighbor tour is likely to be different, and, if we are 

lucky, better. 

Repetitive Nearest-Neighbor 
Algorithm
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Since finding a nearest-neighbor tour is an efficient 

process, it is not unreasonable to repeat the process 

several times, each time starting at a different vertex of 

the graph. In this way, we can obtain several different 

“nearest-neighbor solutions,” from which we can then 

pick the best.

Repetitive Nearest-Neighbor 
Algorithm
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But what do we do with a tour that starts somewhere 

other than the vertex we really want to start at? That’s 

not a problem. Remember that once we have a circuit,

we can start the circuit anywhere we want. In fact, in 

an abstract sense, a circuit has no starting or ending 

point. 

Repetitive Nearest-Neighbor 
Algorithm
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In Example 6.1, we computed the nearest-neighbor 

tour with A as the starting vertex, and we got A, C, E, D, 

B, A with a total cost of $773.

Example 6.5 A Tour of Five Cities: 
Part 3
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But if we use B as the starting vertex, the nearest-

neighbor tour takes us from B to C, then to A, E, D, and 

back to B, with a total cost of $722. Well, that is 

certainly an improvement!

Example 6.5 A Tour of Five Cities: 
Part 3

As for Willy–who 

must start and end 

his trip at A–this 

very same tour 

would take the 

form A, E, D, B, C, 

A.
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The process is once again repeated using C, D, and E

as the starting vertices. When the starting point is C, we 

get the nearest-neighbor tour C, A, E, D, B, C (total cost 

is $722); when the starting point is D, we get the 

nearest-neighbor tour D, B, C, A, E, D (total cost is $722); 

and when the starting point is E, we get the nearest-

neighbor tour E, C, A, D, B, E (total cost is $741).

Example 6.5 A Tour of Five Cities: 
Part 3
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Among all the nearest-neighbor tours we pick the 

cheapest one – A, E, D, B, C, A – with a cost of $722.

Example 6.5 A Tour of Five Cities: 
Part 3
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■ Let X be any vertex. Find the nearest-neighbor 
tour with X as the starting vertex, and calculate 
the cost of this tour. ■ Repeat the process with each of the other 
vertices of the graph as the starting vertex.■ Of the nearest-neighbor tours thus obtained, 
choose one with least cost. If necessary, rewrite 
the tour so that it starts at the designated starting 
vertex. We will call this tour the repetitive nearest-
neighbor tour.

ALGORITHM 3: THE REPETITIVE NEAREST 
NEIGHBOR ALGORITHM
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6.5 The Cheapest-Link 
Algorithm
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The idea behind the cheapest-link algorithm is to piece 

together a tour by picking the separate “links” (i.e., 
legs) of the tour on the basis of cost. It doesn’t matter if

in the intermediate stages the “links” are all over the 

place – if we are careful at the end, they will all come 

together and form a tour. This is how it works: Look at 

the entire graph and choose the cheapest edge of the 

graph, wherever that edge may be. Once this is done, 

choose the next cheapest edge of the graph, 

wherever that edge may be.

Cheapest-Link Algorithm
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(Don’t worry if that edge is not adjacent to the first 

edge.) Continue this way, each time choosing the 

cheapest edge available but following two rules: 

(1) Do not allow a circuit to form except at the very end, 
and 

(2)   Do not allow three edges to come together at a 

vertex. 

A violation of either of these two rules will 

prevent forming a Hamilton circuit. Conversely, 

following these two rules guarantees that the end result 

will be a Hamilton circuit.

Cheapest-Link Algorithm
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Among all the edges of the graph, the “cheapest link” 

is edge AC, with a cost of $119. For the purposes of 

recordkeeping, we will

Example 6.6 A Tour of Five Cities: 
Part 4

tag this edge as 

taken by marking it 

in red as shown.
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The next step is to scan the entire graph again and 

choose the cheapest link available, 

in this case edge CE

Example 6.6 A Tour of Five Cities: 
Part 4

with a cost of $120. 

Again, we mark it in 

red, to indicate it is 

taken.
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The next cheapest link available is edge BC ($121), but 

we should not choose BC–we would have three edges 

coming out of vertex 

Example 6.6 A Tour of Five Cities: 
Part 4

C and this would 

prevent us from 

forming a circuit. This 

time we put a “do not 

use” mark on edge 

BC.
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The next cheapest link available is AE ($133). But we 

can’t take AE either–the vertices A, C, and E would 

form a small circuit,

Example 6.6 A Tour of Five Cities: 
Part 4

making it impossible 

to form a Hamilton 

circuit at the end. So 

we put a “do not 

use” mark on AE.
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The next cheapest link available is BD ($150). Choosing 

BD would not violate either of the two rules, so we can 

add it to our budding circuit and mark it in red.

Example 6.6 A Tour of Five Cities: 
Part 4
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The next cheapest link available is AD ($152), and it 

works just fine.

Example 6.6 A Tour of Five Cities: 
Part 4
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At this point, we have only one way to close up the 

Hamilton circuit, edge BE, as shown.

Example 6.6 A Tour of Five Cities: 
Part 4
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The cheapest-link tour shown could have any starting 

vertex we want. Since Willy lives at A, we describe it as 

A, C, E, B, D, A. The total cost of this tour is $741, which is 

a little better than the

Example 6.6 A Tour of Five Cities: 
Part 4

nearest-neighbor tour 

(see Example 6.4) but not 

as good as the repetitive 

nearest-neighbor tour 

(see Example 6.5).
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■ Step 1. Pick the cheapest link (i.e., edge with 

smallest weight) available. (In case of a tie, pick one 

at random.) Mark it (say in red).■ Step 2. Pick the next cheapest link available and 

mark it.

ALGORITHM 4: THE 
CHEAPEST LINK ALGORITHM
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■ Step 3, 4, …, N – 1. Continue picking and marking 

the cheapest unmarked link available that does not

(a) close a circuit or

(b) (b) create three edges coming out of a single 
vertex■ Step N. Connect the last two vertices to close the 

red circuit. This circuit gives us the cheapest-link tour. 

ALGORITHM 4: THE 
CHEAPEST LINK ALGORITHM
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The figure shows seven sites on Mars identified as 

particularly interesting sites for geological exploration.

Example 6.7 Roving the Red Planet: 
Part 2

Our job is to find 

an optimal tour 

for a rover that 

will land at A, 

visit all the sites 

to collect rock 

samples, and at 

the end return 

to A.
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The distances 

between sites (in 

miles) are given 

in the graph 

shown.

Example 6.7 Roving the Red Planet: 
Part 2
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Let’s look at some of the approaches one might use to 

tackle this problem.

Brute force: The brute-force algorithm would require us 

to check and compute 6! = 720 different tours. We will 

pass on that idea for now.

Cheapest link: The cheapest-link algorithm is a 

reasonable algorithm to use – not trivial but not too 

hard either. A summary of the steps is shown in the table 

on the next slide. 

Example 6.7 Roving the Red Planet: 
Part 2
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The cheapest-link tour (A, P, W, H, G, N, I, A with a total 

length of 21,400 miles) is shown.

Example 6.7 Roving the Red Planet: 
Part 2
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Here is the  

cheapest-link 

tour again (A, P, 

W, H, G, N, I, A

with a total 

length of 21,400 

miles) is shown.

Example 6.7 Roving the Red Planet: 
Part 2
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Nearest neighbor: The nearest-neighbor algorithm is the 

simplest of all the algorithms we learned. Starting from 

A we go to P, then to W, then to H, then to G, then to I, 

then to N, and finally back to A. The nearest-neighbor 

tour (A, P, W, H, G, I, N, A with a total length of 20,100 

miles) is shown on the next two slides. (We know that 

we can repeat this method using different starting 

points, but we won’t bother with that at this time.) 

Example 6.7 Roving the Red Planet: 
Part 2
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Nearest neighbor: A, P, W, H, G, I, N, A with a total 

length of 20,100 miles.

Example 6.7 Roving the Red Planet: 
Part 2
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Nearest 

neighbor:

A, P, W, H, G, I, N, 

A with a total 

length of 20,100 

miles.

Example 6.7 Roving the Red Planet: 
Part 2
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The first surprise in Example 6.7 is that the nearest-

neighbor algorithm gave us a better tour than the 

cheapest-link algorithm. Sometimes the cheapest-link 

algorithm produces a better tour than the nearest-

neighbor algorithm, but just as often, it’s the other way 

around. The two algorithms are different but of equal 

standing – neither one can be said to be superior to the 

other one in terms of the quality of the tours it produces.

Surprise One
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The second surprise is that the nearest-neighbor tour A, 

P, W, H, G, I, N, A turns out to be an optimal tour. (This 

can be verified using a computer and the brute-force 

algorithm.) Essentially, this means that in this particular 

example, the simplest of all methods happens to 

produce the optimal answer–a nice turn of events. Too 

bad we can’t count on this happening on a more 

consistent basis!

Surprise Two


