13.2 Classical PDE’s and Boundary Value Problems

<table>
<thead>
<tr>
<th>Heat Equation</th>
<th>Wave Equation</th>
<th>Laplace’s Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution: $u(x,t)$</td>
<td>Solution: $u(x,t)$</td>
<td>Solution: $u(x, y)$</td>
</tr>
<tr>
<td>$k \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ $k > 0$</td>
<td>$\alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ $\alpha > 0$</td>
<td>$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$</td>
</tr>
<tr>
<td>or $k u_{xx} = u_t$ $k > 0$</td>
<td>or $\alpha^2 u_{xx} = u_{tt}$</td>
<td>or $u_{xx} + u_{yy} = 0$</td>
</tr>
</tbody>
</table>

- ________ (transfer) by ________ in a rod or thin wire
 - $u = \quad x = \quad t =$
- ________ (financial mathematics) reduces to heat equation
 - measures mechanical vibrations of a ________
 - ________ and ________ satisfy the wave eq. in a long cable (telegraph eq.)
 - ________ equation (financial mathematics)
 - fluid mechanics
 - acoustics
 - elasticity

- time independent
 - ________ temperature distribution throughout a thin ________
 - ________ and ________ other areas:
 - electrostatic potential
 - gravitational potential
 - velocity in fluid mechanics

13.2 Classical PDE’s and Boundary Value Problems

We need to consider ________ conditions and ________ values:

Initial conditions: when time $t = 0$ \Rightarrow

Heat equation:

- $u(x, 0) = f(x)$
 - (Initial temp. distribution)

Wave equation:

- can also specify initial velocity of the string
 - $g(x) = 0$ \Rightarrow
 - $u = 0$ at $x = 0$
 - $u = 0$ at $x = L$
13.2 Classical PDE's and Boundary Value Problems

Boundary conditions: 3 types:

- \(u = 0 \) : Condition on the function \(u \) at the endpoints
 - **Heat equation**: temperature at the left and right ends of the rod
 - **Wave equation**: ends of the string are fixed to the \(x \)-axis could also move in a transverse manner according to a function of time
 - **Laplace's equation**: temperature on the boundary of the plate

\[u = 0 \]

- \(u = f(x) \): Condition on the normal derivative of the function \(u \) (directional derivative of \(u \) perpendicular to the boundary) at the endpoints
 - **Heat equation**: no temperature change at the left or right ends of the rod \(\Rightarrow \) **end is** \(u = 0 \)
 - **Wave equation**: string endpoint which is free to move in a transverse direction
 - **Laplace's equation**: no temperature change through the side of the plate
13.2 Classical PDE's and Boundary Value Problems

- _______: Condition that is a combination of Dirichlet and Neumann, mainly used for the heat equation

The heat loss or heat gain represented as ________ through an endpoint.

____________________ states that this is proportional to the difference between that temperature at the boundary and the temperature of the surrounding medium.

\[h > 0, h \text{ and } u_m \text{ are constants} \]

Assume the rod is at a higher temperature than the medium surrounding the ends:

⇒

This explains the heat gain on the left end and the heat loss on the right end.

13.2 Classical PDE's and Boundary Value Problems

Heat transfer through the lateral surface ⇒

The pde becomes:

![Diagram of a rod with insulated ends and heat transfer through the lateral surface]
13.2 Classical PDE’s and Boundary Value Problems

Set up the boundary value problem:

1. Heat equation - a rod of length L
 - The left end is held at temperature zero, and the right end is insulated. The initial temperature is $f(x)$ throughout.
 - Solve:
 - Subject to:

2. Heat equation - a rod of length L
 - The left end is held at temperature 100°, and there is heat transfer from the right end into the surrounding medium at temperature zero. The initial temperature is $f(x)$ throughout.
 - Solve:
 - Subject to:

3. Heat equation - a rod of length L
 - The left end is held at temperature zero, and the right end is insulated. The initial temperature is $f(x)$ throughout.
 - Solve:
 - Subject to:

10. Wave equation - a string of length L
 - The ends are secured to the x–axis, and the string is initially at rest on that axis. An external vertical force proportional to the horizontal distance from the left end acts on the string for $t > 0$.
 - Solve:
 - Subject to: