Section 17.3

Sets in the Complex Plane

The points \(z = x + iy \) that lie on the _____ of radius ____ centered at the point ____.

\[|z - z_0| = \rho \]

The points \(z = x + iy \) that lie within (_______) the circle of radius \(\rho \) centered at the point \(z_0 \).

This is called a ___________ of \(z_0 \) or an __________.

Take a point \(z_0 \) of a set \(S \) of the complex plane. If there exists some neighborhood of \(z_0 \) that lies entirely within \(S \), then \(z_0 \) is called an __________ of \(S \).

\(S \) is called an _______ if every point \(z \) of the set \(S \) is an _______ point.

Examples:
If _______ neighborhood of a point \(z_0 \) contains at least one point that is in a set \(S \) and at least one point that is not in \(S \), then \(z_0 \) is called a _____________ of \(S \).

The set of _____ boundary points of \(S \) is called the __________ of \(S \).

The _________ of an open set is a ________.

A closed set contains its ________ (all of its ____________)

Take an _________ \(S \).

If any pair of points in \(S \) can be connected by a _____ number of line segments, then \(S \) is called _________.

An open connected set is also called a __________.

Section 17.4

Complex Functions

Let \(S \) be a subset of \(\mathbb{C} \).

A **complex function** \(f \) is a rule that assigns a complex number \(w \) to every complex number \(z \) in \(S \).
\[z = x + iy \quad \text{and} \quad w = u(x, y) + iv(x, y) \]

Image of z

\[w = f(z) = f(x + iy) = u(x, y) + iv(x, y) \]

Example:

\[f(z) = z + (\overline{z})^2 \]

\[f(1 + 2i) = \quad f\left(\frac{1}{2} - i\right) = \]

Limit of a complex function

If for every \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that

\[|f(z) - L| < \varepsilon \text{ whenever } 0 < |z - z_0| < \delta, \]

then we say that the limit of \(f(x) \) as \(z \) approaches \(z_0 \) exists and is equal to \(L \).

In symbols, \(\lim_{z \to z_0} f(z) = L \).

For any given \(\varepsilon \)-neighborhood of \(L \) containing the image of \(z \) (called \(f(z) \)), one can always find a \(\delta \)-neighborhood of \(z_0 \) containing \(z \) such that the images of all the points in the \(\delta \)-neighborhood of \(z_0 \) lie within the \(\varepsilon \)-neighborhood about \(L \).

Like in the multivariable limit of Calc II, \(z \to z_0 \) from _____ direction.
Definitions:

\(f(z) \) is ______________ if \(\lim_{z \to z_0} f(x) = f(z_0) \).

\(f(z) \) is ______________ if it is continuous at every point in the domain.

The __________ of \(f \) at a point \(z_0 \) is

\[
f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}
\]

(provided this limit exists)

If the limit exists, \(f \) is said to be ______________ at \(z_0 \).

If \(f \) is differentiable at \(z_0 \) and at every point in some neighborhood of \(z_0 \), then \(f \) is called ______________.

\(f(z) \) is called ______________ (or just __________) if it is analytic at every point in the domain.

If \(f(z) \) is analytic on the ______ complex plane, then \(f \) is called ________.

Let \(f(z) = \overline{z} \). Find \(f'(z) \) if it exists.

\[
f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}
\]

\[
z = f(z) = \Delta z = f(z + \Delta z) =
\]

\[
f(z + \Delta z) - f(z) = (x + \Delta x) - i(y + \Delta y) - [x - iy] =
\]

\[
f'(z) = \lim_{\Delta z \to 0}
\]

a) let \(\Delta z \to 0 \) along a ________ line, (\(\Rightarrow \Delta y = 0 \))

b) let \(\Delta z \to 0 \) along a ________ line, (\(\Rightarrow \Delta x = 0 \))

\[
\lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z} = \lim_{\Delta y \to 0} \frac{\Delta z}{\Delta z} = \lim_{\Delta y \to 0} \frac{\Delta z}{\Delta z}
\]

\(\Rightarrow \) the limit ________________, \(f(z) = \overline{z} \) is __________ differentiable.
The differentiation rules for complex functions are the same as for real-valued functions.

Constant Rules
\[
\frac{d}{dz}(c) = 0 \quad \text{and} \quad \frac{d}{dz}(cf(z)) = cf'(z)
\]

Quotient Rule
\[
\frac{d}{dz} \left(\frac{f(z)}{g(z)} \right) = \frac{f'(z)g(z) - g'(z)f(z)}{(g(z))^2}
\]

Sum/Difference Rules
\[
\frac{d}{dz}(f(z) \pm g(z)) = f'(z) \pm g'(z)
\]

Product Rule
\[
\frac{d}{dz}(f(z) \cdot g(z)) = f'(z)g(z) + g'(z)f(z)
\]

Solve \(z^2 - 2z + 2 = 0 \)
Prob. 22 Section 17.4

\(z = x + iy \), \(x \) and \(y \) real

\[(x + iy)^2 - 2(x + iy) + 2 = 0\]

\[
() + ()i = 0
\]

\(= 0 \quad \text{and} \quad = 0 \)

\(2xy - 2y = 0 \Rightarrow 2y(x - 1) = 0 \quad \text{either} \)

\(y = 0 \Rightarrow x^2 - y^2 - 2x + 2 = 0 \) becomes

\(x^2 - 2x + 2 = 0 \) which has no solution for real \(x \)

\(x = 1 \Rightarrow x^2 - y^2 - 2x + 2 = 0 \) becomes

\(1 - y^2 - 2 + 2 = 0 \Rightarrow \)

Roots of \(z^2 - 2z + 2 = 0 \) are \(z = \) and \(z = \)

So \(z^2 - 2z + 2 = [] \)
Solve \(z^2 - 2i = 0 \)

\(z = x + iy, \) \(x \) and \(y \) real

\((x + iy)^2 - 2i = 0\)

\((\quad) + (\quad)i = 0\)

\(= 0\) and \(= 0\)

\(2xy - 2 = 0 \Rightarrow 2(xy - 1) = 0 \Rightarrow\)

\(\Rightarrow\)

\(y = \frac{1}{x} \Rightarrow x^2 - y^2 = 0\) becomes

\(x^2 - \frac{1}{x^2} = 0 \Rightarrow x^4 = 1\) so

Roots of \(z^2 - 2i \)

are \(z = \) and \(z = \)

So \(z^2 - 2i = [\quad] \)

\[\lim_{z \to 1+i} \frac{z^2 - 2z + 2}{z^2 - 2i} \]

\[= \lim_{z \to 1+i} \frac{z - (1 + i)(z - (1 - i))}{z - (1 + i)(z - (-1 - i))} \]

\[= \lim_{z \to 1+i} \frac{(1 + i) - (1 - i)}{(1 + i) - (-1 - i)} = \]

\[= \frac{2i(\quad)}{(2 + 2i)(\quad)} = \frac{8}{8} = \]