Section 17.5 Cauchy-Riemann Equations

If \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \) is differentiable at \(z \), then the partial derivatives of \(u \) and \(v \) exist at the point \(z \) and satisfy the Cauchy–Riemann equations \(u_x = v_y \) and \(u_y = -v_x \) at \(z \).

\[
f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}
\]
where:
- \(\Delta z = \Delta x + i\Delta y \)
- \(f(z) = u(x, y) + iv(x, y) \)
- \(f(z + \Delta z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) \)

\[
f'(z) = \lim_{\Delta x + i\Delta y \to 0} \frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - [u(x, y) + iv(x, y)]}{\Delta x + i\Delta y}
\]

\[
f'(z) = \lim_{\Delta x + i\Delta y \to 0} \frac{u(x + \Delta x, y + \Delta y) - u(x, y)}{\Delta x + i\Delta y} + i \lim_{\Delta x + i\Delta y \to 0} \frac{v(x + \Delta x, y + \Delta y) - v(x, y)}{\Delta x + i\Delta y}
\]

These limits have to exist as \(\Delta x + i\Delta y \to 0 \) from any direction.

Consider two paths; horizontally and vertically.

a) as \(\Delta x + i\Delta y \to 0 \) horizontally \(\Delta y = 0 \), thus the limits become:

\[
f'(z) = \left(\lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} \right) + i \left(\lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \right)
\]

\[
f'(z) = u_x + iv_x
\]

b) as \(\Delta x + i\Delta y \to 0 \) vertically \(\Delta x = 0 \), thus the limits become:

\[
f'(z) = \left(\lim_{i\Delta y \to 0} \frac{u(x, y + i\Delta y) - u(x, y)}{i\Delta y} \right) + i \left(\lim_{i\Delta y \to 0} \frac{v(x, y + i\Delta y) - v(x, y)}{i\Delta y} \right)
\]

\[
f'(z) = \frac{1}{i} \left(\text{partial derivative of } u \text{ w.r.t. } y \right) + i \left(\text{partial derivative of } v \text{ w.r.t. } y \right)
\]

\[
f'(z) = v_y - iu_y
\]

Equating real parts: \(u_x = v_y \)
Equating imaginary parts: \(u_y = -v_x \)
We just saw:
If \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \) is differentiable at \(z \),
then the partial derivatives of \(u \) and \(v \) exist at the point \(z \) and
satisfy the Cauchy–Riemann equations \(u_x = v_y \) and \(u_y = -v_x \) at \(z \).

The converse is not necessarily true. It is possible for \(u \) and \(v \) to satisfy
the Cauchy–Riemann equations at \(z \) and for \(f \) to not be differentiable at \(z \).

Example: \(f(z) = \begin{cases} \frac{z^2}{z} & z \neq 0 \\ 0 & z = 0 \end{cases} \)

\[\frac{\Delta u}{\Delta x} = \frac{0 - 0}{\Delta x} = 1 \]
\[\frac{\Delta v}{\Delta y} = 0 \]

\[u_x(0, 0) = \lim_{\Delta x \to 0} \frac{u(0 + \Delta x, 0) - u(0, 0)}{\Delta x} = \frac{(\Delta x)^2 - 0}{(\Delta x)^2 + 0} = 1 \]
\[v_y(0, 0) = \lim_{\Delta y \to 0} \frac{v(0, 0 + \Delta y) - v(0, 0)}{\Delta y} = 0 \]

So \(u_x(0, 0) = 0 = v_y(0, 0) \),
so \(u_x = -v_y \).

From last lecture we saw:
If \(f \) is differentiable at \(z_0 \) and at every point in some neighborhood of \(z_0 \),
then \(f \) is called analytic at \(z_0 \).

\(f(z) \) is called analytic on a domain (or just analytic) if it
is analytic at every point in the domain.

So now we can say,
\(f(z) \) is analytic on a domain \(\Rightarrow \) the partial derivatives of \(u \) and \(v \) exist
and satisfy the Cauchy-Riemann equations on the entire domain.

The Cauchy-Riemann equations by themselves are not enough to ensure the
analyticity of a function. We need to add a couple of conditions:

If two real- valued functions \(u(x, y) \) and \(v(x, y) \)
a) are continuous and have continuous first- order partial derivatives in a domain \(D \) and
b) satisfy the Cauchy - Riemann equations on the entire domain,
then \(f(z) = u(x, y) + iv(x, y) \) is analytic in \(D \).

We can find \(f'(z) \) by:

a) \(f'(z) = u_x + iv_x \)
b) \(f'(z) = v_y - iu_y \)
Solutions of Laplace’s equation \(u_{xx} + u_{yy} = 0 \) that have continuous second order partial derivatives in a domain \(D \), are called harmonic in \(D \).

\[
f(z) = u(x, y) + iv(x, y) \Rightarrow u(x, y) \text{ and } v(x, y)
\]
is analytic in \(D \) are harmonic in \(D \)

Proof: \(f \) analytic \(\Rightarrow \) 1) \(u_x = v_y \) and 2) \(u_y = -v_x \).

- Differentiate 1) w.r.t. \(x \) \(\Rightarrow u_{xx} = v_{yx} \)
- Differentiate 2) w.r.t. \(y \) \(\Rightarrow u_{yy} = -v_{xy} \)
- Adding gives: \(u_{xx} + u_{yy} = v_{yx} - v_{xy} \) \(\Rightarrow u_{xx} + u_{yy} = 0 \), thus \(u \) is harmonic.

- Differentiate 1) w.r.t. \(y \) \(\Rightarrow u_{xy} = v_{yy} \)
- Differentiate 2) w.r.t. \(x \) \(\Rightarrow u_{yx} = -v_{xx} \)
- Subtracting gives: \(v_{xx} + v_{yy} = u_{xy} - u_{yx} \) \(\Rightarrow v_{xx} + v_{yy} = 0 \), thus \(v \) is harmonic.

Given a \(u(x, y) \) that is harmonic in a domain \(D \), we can find a \(v(x, y) \) called the conjugate harmonic function of \(u \) so that \(f(z) = u(x, y) + iv(x, y) \) is analytic in \(D \).

Example: \(u(x, y) = 4x y^3 - 4x^3 y + x \)

\[
u_x = 4y^3 - 12x^2 y + 1 \text{ and } u_y = 12x y^2 - 4x^3
\]

- \(C - R \) equations: \(u_x = v_y \) and \(u_y = -v_x \)

\[
\Rightarrow v_y = 4y^3 - 12x^2 y + 1
\]

\[
\Rightarrow \int v_y \, dy = \int \left(4y^3 - 12x^2 y + 1 \right) dy
\]

\[
\Rightarrow v(x, y) = y^4 - 6x^2 y^2 + y + K(x)
\]

so \(v_x = -12x y^2 + K'(x) \)

\[
u_y = -v_x \Rightarrow 12y^2 - 4x^3 = -12x y^2 + K'(x) \Rightarrow K'(x) = 4x^3
\]

\[
\Rightarrow K(x) = \int K'(x) \, dx = \int 4x^3 \, dx \Rightarrow K(x) = x^4 + C
\]

\[
:\therefore v(x, y) = y^4 - 6x^2 y^2 + y + x^4 + C
\]

\[
f(z) = (4x y^3 - 4x^3 y + x) + i \left(y^4 - 6x^2 y^2 + y + x^4 + C \right) \text{ is analytic}
\]