Section 18.2 Cauchy-Goursat Theorem

Simply connected domain
- every simple closed contour lying entirely in the domain can be shrunk to a point without leaving D
- "no holes"

Multiply connected domain
- connected but not simply connected
- one or more "holes"

Cauchy-Goursat Theorem
Let \(f(z) \) be analytic in a simply connected domain \(D \).
For every simple closed contour \(C \) in \(D \), \(\oint_C f(z) dz = 0 \).

Example:
\[
\oint_C \frac{z-3}{z^2 - 2z + 2} \, dz
\]
\(C \) is the unit circle \(|z|=1\)

\[
= \oint_C \frac{z-3}{z-(1+i)} \frac{z-3}{z-(1-i)} \, dz
\]
Analytic inside and on the unit circle

\[
\Rightarrow \oint_C \frac{z-3}{z^2 - 2z + 2} \, dz = 0
\]
What about for multiply connected domains?

Introduce a cut from A to B

This effectively switches the orientation of the inner contour

\[
\oint_{C} f(z)\,dz + \oint_{C_1} f(z)\,dz = 0
\]

\[
\oint_{C} f(z)\,dz = -\oint_{C_1} f(z)\,dz
\]

\[
\oint_{C} f(z)\,dz = \oint_{C_1} f(z)\,dz
\]

Deformation of contours

\[
\oint_{C} \frac{1}{z - i}\,dz
\]

C is the outer contour below

Deform contour C into a more convenient circular contour C₁

\[C_1\text{ parametrized by } z = i + e^{it} \quad 0 \leq t \leq 2\pi\]

\[
\oint_{C} f(z)\,dz = \int_{a}^{b} f(z(t))z'(t)\,dt
\]

\[
f(z(t)) = \frac{1}{i + e^{it} - i} = e^{-it} \quad z'(t) = ie^{it}
\]

\[
f(z(t))z'(t) = e^{-it} \cdot ie^{it} = i
\]

\[
\oint_{C} \frac{1}{z - i}\,dz = \int_{0}^{2\pi} i\,dt = 2\pi i
\]
Let z_0 be in the interior of any simple closed contour C.

\[\oint_C \frac{1}{(z-z_0)^n} \, dz = \begin{cases} 2\pi i, & n = 1 \\ 0, & n \neq 1 \end{cases} \]

For $n = 1$:

- Deform to a convenient circular contour C_r defined by $|z-z_0|=r$.
- r small enough so that C_r lies entirely inside C.

\[z = z_0 + re^{it} \quad z'(t) = ire^{it} \]

\[f(z(t)) = \frac{1}{z_0 + re^{it} - z_0} = \frac{1}{r} e^{-it} \]

\[f(z(t)) z'(t) = i \]

\[\oint_C \frac{1}{(z-z_0)^n} \, dz = \int_0^{2\pi} i \, dt = 2\pi i \]

\[\int_0^{2\pi} i \, dt = 2\pi i \]

\[\int_0^{2\pi} e^{(1-n)i} \, dt = \int_0^{2\pi} \frac{e^{(1-n)i}}{(1-n)i} \, dt \]

\[= \left[e^{(1-n)i} \right]_0^{2\pi} = e^{2\pi(1-n)i} - 1 \]

\[= 0 \quad (\text{since } e^{2\pi(1-n)i} = 1) \]

$$\int_{C_r} \frac{-3z+2}{z^2-8z+12} \, dz = -4\int_{C_r} \frac{1}{z-6} \, dz + \frac{1}{z-2} \, dz$$

C: $|z|=9$

"hole" at 6 "hole" at 2

\[\frac{-3z+2}{z-6}(z-2) = \frac{A}{z-6} + \frac{B}{z-2} = \frac{-4}{z-6} + \frac{1}{z-2} \]

$z=6:$ $A = \frac{-3(6)+2}{6-2} = \frac{-16}{4} = -4$

$z=2:$ $B = \frac{-3(2)+2}{2-6} = \frac{-4}{-4} = 1$

\[= -4(2\pi) + (2\pi) \]

\[= -6\pi i \]