Section 18.4
Cauchy's Integral Formula

If a) \(f(z) \) is an ______ function in a ____________ domain \(D \)

b) \(C \) is a ___________ contour in \(D \) traversed ________

c) \(z_0 \) is any point ________,

then,

\[f(z_0) = \]

or \[\oint_C \frac{f(z)}{z-z_0} \, dz = \]

\[\oint_C \frac{z^2 - 3z + 4i}{z + 2i} \, dz \quad C : |z| = 3 \]

Cauchy’s Integral Formula
\[\oint_C \frac{f(z)}{z-z_0} \, dz = 2\pi if(z_0) \]

\(f(z) = \quad z_0 = \)

\(f(z_0) = \)

\(f(z_0) = \quad \Rightarrow f(z_0) = \)

\(2\pi if(z_0) = \quad \Rightarrow 2\pi if(z_0) = \)
Cauchy's Integral Formula for Derivatives

If a) $f(z)$ is an _______ function in a ___________ domain D

b) C is a ___________ contour in D traversed ____________

c) z_0 is any point _______,

then,

$$f^{(n)}(z_0) =$$

or

$$\oint_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz =$$

$$\oint_{C} \frac{1}{z^3(z-1)^2} dz \quad C : |z-2| = 5$$

$C_1 : |z| = \quad C_2 : |z-1| =$

= $\oint_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$
\[
\oint_{C} \frac{3z+1}{z(z-2)^2} \, dz
\]

\[
= \quad 18.4 \ # \ 23
\]

A Bounding Theorem

If \(f(z) \) is continuous on a smooth curve \(C \) and if \(|f(z)| \leq M \) for all \(z \) on \(C \), then

\[
\left| \oint_{C} f(z) \, dz \right| \leq ML, \quad \text{where } L \text{ is the length of } C.
\]

Cauchy’s Inequality

If we take \(C \) to be the circle \(|z - z_0| = r \) and if \(|f(z)| \leq M \) for all \(z \) on \(C \), then

\[
|f^{(n)}(z_0)| \leq \frac{n!M}{r^n}
\]

Liouville’s Theorem

The only _______ ________ functions are __________.