Last time. We want to solve the equation

$$\frac{d\overrightarrow{x}}{dt}(t) = A\overrightarrow{x}(t).$$

Where A is a given matrix that does not depend on (t).

Eigenvalues and eigenvectors

Suppose A is an $(n \times n)$ -matrix. We say λ is an eigenvalue of A if there is a non zero vector $\overrightarrow{x} \in \mathbb{R}^n$ so that $A\overrightarrow{x} = \lambda \overrightarrow{x}$.

Suppose A is a (3 x 3)-matrix and it has three eigenvalue λ_1 , λ_2 , λ_3 and three eigenvectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$. Let us suppose the eigenvectors are linearly independent. Then each vector \overrightarrow{w} is a linear combination of the \overrightarrow{v} 's. In fact

$$\overrightarrow{w} = s_1 \overrightarrow{v_1} + s_2 \overrightarrow{v_2} + s_3 \overrightarrow{v_3}$$

$$A^n \overrightarrow{w} = s_1 \lambda_1^n \overrightarrow{v_1} + s_2 \lambda_2^n \overrightarrow{v_2} + s_3 \lambda_3^n \overrightarrow{v_3}$$

So in terms of the \overrightarrow{v} 's the matrix A is diagonal so

$$e^{tA} = \begin{bmatrix} e^{t\lambda_1} & 0 & 0 \\ 0 & e^{t\lambda_2} & 0 \\ 0 & 0 & e^{t\lambda_3} \end{bmatrix}$$
 in terms of the \overrightarrow{v}

Now the traditional basis for \mathbb{R}^3 is

$$\overrightarrow{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \overrightarrow{J} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \overrightarrow{K} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and to compute e^{tA} we have the basis $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$. We form the change of basis matrix S. Given a vector

$$\overrightarrow{w} = s_1 \overrightarrow{v_1} + s_2 \overrightarrow{v_2} + s_3 \overrightarrow{v_3}$$

to express $\overline{w}^{\, \overline{}}$ in terms of the standard basis we use the matrix

$$S = [\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}] = \begin{bmatrix} (\overrightarrow{v_1})_1 & (\overrightarrow{v_2})_1 & (\overrightarrow{v_3})_1 \\ (\overrightarrow{v_1})_2 & (\overrightarrow{v_2})_2 & (\overrightarrow{v_3})_2 \\ (\overrightarrow{v_1})_3 & (\overrightarrow{v_2})_3 & (\overrightarrow{v_3})_3 \end{bmatrix}$$

$$S \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} w_X \\ w_y \\ w_z \end{bmatrix} = w_X \overrightarrow{1} + w_y \overrightarrow{J} + w_z \overrightarrow{K}$$

To express a vector in standard coordinates (w_x, w_y, w_z) in terms of the \overrightarrow{v} 's we use the inverse matrix s^{-1}

$$S^{-1} \begin{bmatrix} w_{X} \\ w_{y} \\ w_{z} \end{bmatrix} = \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \end{bmatrix}$$

Then

$$e^{tA} = S \begin{bmatrix} e^{t\lambda_1} & 0 & 0 \\ 0 & e^{t\lambda_2} & 0 \\ 0 & 0 & e^{t\lambda_3} \end{bmatrix} S^{-1}$$

note
$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = S^{-1}AS$$

A matrix is diagonalizable if $\mbox{ A = SDS}^{-1}$ A is diagonalizable if the set of eigenvectors span \mathbb{R}^n

How to find the eigenvalues

$$p(\lambda) = \det(A - \lambda I).$$

$$p(\lambda) = (-\lambda)^n + \operatorname{tr}(A) (-\lambda)^{n-1} + \cdots + \det(A)$$

$$\operatorname{trace} A = \sum_{k=1}^n a_{i i}$$

characteristic polynomial eigenvalues are the roots to the equation $p(\lambda) = 0$.

If there are n distinct roots then the eigenvector form a basis for \mathbb{R}^n . It there are less than n distinct roots the eigenvectors may still form a basis. You have to check.

It the eigenvectors do not form a basis then A is said to be defective.

Lets do a problem.

#9 Spring 16

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$
 They say the characteristic polynomial is $(\lambda-1)^2(\lambda-3)$

Note the book defines

$$p(\lambda) = det(\lambda I - A) = -(\lambda - 1)^{2}(\lambda - 3)$$

You should be aware that other authors define $p(\lambda) = det(\lambda I - A)$. For the A above we have

$$\det(A - \lambda I) = (2-\lambda)^{2}(1-\lambda) - (1-\lambda) = (1-\lambda)(4-4\lambda+\lambda^{2}-1)$$
$$= (1-\lambda)(3-4\lambda+\lambda^{2}) = (1-\lambda)(1-\lambda)(3-\lambda)$$

Find the eigenvector for $\lambda = 3$.

$$A - 3I = \begin{bmatrix} -1 & -1 & 1 \\ 0 & -3 & 0 \\ 1 & -1 & -1 \end{bmatrix}$$

$$(A-3I)\overrightarrow{v} = 0 \qquad \overrightarrow{v} = (x,y,z)$$

call the components anything you want

$$\begin{bmatrix} -1 & -1 & 1 \\ 0 & -3 & 0 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

middle equation says -3y = 0 so y = 0

Top and bottom equations say

$$-X + Z = 0$$
$$X - Z = 0$$

Pick the most simple solution \overrightarrow{v} = (1,0,1)

What about the eigenvalue $\lambda = 1$.

$$(A - I)\overrightarrow{v} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} X \\ y \\ z \end{bmatrix} = \overrightarrow{0}$$

middle equation tell you nothing top and bottom tell you the same thing so there is only one equation

$$x - y + z = 0$$

Pick two solution. How to pick. Anyway you want. You want integer coefficients.

So we have three eigenvectors.

$$\overrightarrow{v_1} \overrightarrow{v_2} \overrightarrow{v_3} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = S$$

compute the inverse

$$det(S) = 1 + 1 = 2$$

$$S^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$A = S \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} S^{-1}$$

$$e^{tA} = S \begin{bmatrix} e^{3t} & 0 & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t} \end{bmatrix} S^{-1}$$

$$S \begin{bmatrix} e^{3t} & 0 & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^t \end{bmatrix} = \begin{bmatrix} e^{3t} & e^t & 0 \\ 0 & e^t & e^t \\ e^{3t} & 0 & e^t \end{bmatrix} \qquad \begin{array}{l} \text{multiply first column by } e^{3t} \\ \text{multiply second column by } e^t \\ \text{multiply third column by } e^t \\ \end{array}$$

$$e^{tA} = \frac{1}{2} \begin{bmatrix} e^{3t} & e^{t} & 0 \\ 0 & e^{t} & e^{t} \\ e^{3t} & 0 & e^{t} \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{3t} + e^{t} & -e^{3t} + e^{t} & e^{3t} - e^{t} \\ 0 & 2e^{t} & 0 \\ e^{3t} - e^{t} & -e^{3t} + e^{t} & e^{3t} + e^{t} \end{bmatrix}$$

Check
$$e^{0A} = I$$

$$\frac{d}{dt}e^{t\,A} = \left[\begin{array}{ccc} 2 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{array} \right] \qquad A = \left[\begin{array}{ccc} 2 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{array} \right]$$