Math 103 Day 20: The Fundamental Theorem of Calculus and Indefinite Integrals

Ryan Blair

University of Pennsylvania

Thursday November 18, 2010
The Fundamental Theorem of Calculus and Definite Integrals
Properties of Integrals

1. \(\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \)
2. \(\int_{a}^{a} f(x) \, dx = 0 \)
3. \(\int_{a}^{b} c \, dx = c(b - a) \) where \(c \) is any constant.
4. \(\int_{a}^{b}[f(x) + g(x)] \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \)
5. \(\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx \) where \(c \) is a constant.
6. \(\int_{a}^{b}[f(x) - g(x)] \, dx = \int_{a}^{b} f(x) \, dx - \int_{a}^{b} g(x) \, dx \)
The Fundamental Theorem of Calculus and Definite Integrals

Theorem

(Fundamental Theorem of Calculus, Part 1) If f is continuous on $[a, b]$, then the function g defined by

$$g(x) = \int_a^x f(t) \, dt \quad a \leq x \leq b$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g'(x) = f(x)$.
The Fundamental Theorem of Calculus and Definite Integrals

Theorem

(Fundamental Theorem of Calculus, Part 1) If f is continuous on $[a, b]$, then the function g defined by

$$g(x) = \int_a^x f(t) \, dt \quad a \leq x \leq b$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g'(x) = f(x)$.

Theorem

(Fundamental Theorem of Calculus, Part 2) If f is continuous on $[a, b]$, then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

Where F is any antiderivative of f, that is, a function such that $F' = f$.
Definition

\[\int f(x) \, dx = F(x) \quad \text{means} \quad F'(x) = f(x) \]
Exercise Water flows from the bottom of a storage tank at a rate of
\[r(t) = 200 - 4t \] liters per minute, where \(0 \leq t \leq 50 \). Find the amount of water that flows from the tank during the first 10 minutes.