Math 103 Day 6: Derivative Rules

Ryan Blair

University of Pennsylvania

Tuesday September 28, 2010
1. Derivative Rules
Formula 1: When c is a constant

$$
\frac{d}{dx}(c) = 0
$$
Formula 2:

\[
\frac{d}{dx}(x) = 1
\]
Formula 3: When n is a positive integer,

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
Formula 3: When n is a positive integer,

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

fact:

$$(x - a)^n = (x - a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + ... + a^{n-2}x + a^{n-1})$$
Formula 4: (General Power Rule) When n is any real number,

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
Formula 5: If c is a constant and f is differentiable, then

$$
\frac{d}{dx}(cf(x)) = c \frac{d}{dx}(f(x))
$$
Formula 6: (Sum Rule) If g and f are differentiable, then

\[
\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]
\]
Formula 7: (Difference Rule) If g and f are differentiable, then

$$
\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]
$$
Formula 8: (Product Rule) If f and g are both differentiable, then

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}(g(x)) + g(x)\frac{d}{dx}(f(x))$$
Formula 9: (Quotient Rule) If f and g are differentiable, then

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} (f(x)) - f(x) \frac{d}{dx} (g(x))}{(g(x))^2}$$
Theorem

If $f(x) = \sin(x)$, then $f'(x) = \cos(x)$.
Theorem

If $f(x) = \sin(x)$, *then* $f'(x) = \cos(x)$.

This is challenging to prove, so we need some lemmas.
Theorem

If \(f(x) = \sin(x) \), then \(f'(x) = \cos(x) \).

This is challenging to prove, so we need some lemmas.

Lemma

\[
\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1
\]

Lemma

\[
\lim_{\theta \to 0} \frac{(\cos(\theta) - 1)}{\theta} = 0
\]