Outline

1. Trig Derivatives
More Trig Derivatives
More Trig Derivatives

1. \(\frac{d}{dx}(\cos(x)) = -\sin(x) \)
More Trig Derivatives

1. \(\frac{d}{dx}(\cos(x)) = -\sin(x) \)

2. \(\frac{d}{dx}(\tan(x)) = (\sec(x))^2 \)
More Trig Derivatives

1. \(\frac{d}{dx}(\cos(x)) = -\sin(x) \)
2. \(\frac{d}{dx}(\tan(x)) = (\sec(x))^2 \)
3. \(\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x) \)
More Trig Derivatives

1. \(\frac{d}{dx}(\cos(x)) = -\sin(x) \)
2. \(\frac{d}{dx}(\tan(x)) = (\sec(x))^2 \)
3. \(\frac{d}{dx}(\csc(x)) = -\csc(x)cot(x) \)
4. \(\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x) \)
More Trig Derivatives

1. \(\frac{d}{dx}(\cos(x)) = -\sin(x) \)
2. \(\frac{d}{dx}(\tan(x)) = (\sec(x))^2 \)
3. \(\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x) \)
4. \(\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x) \)
5. \(\frac{d}{dx}(\cot(x)) = -(\csc(x))^2 \)
Chain Rule

If g is differentiable at x and f is differentiable at $g(x)$, then the composition function $F = f \circ g$ defined by $F(x) = f(g(x))$ is differentiable at x and

$$F'(x) = f'(g(x))g'(x)$$
Change of variable rule for limits

If \(\lim_{x \to 0} f(x) = 0 \), then

\[
\lim_{x \to 0} g(f(x)) = \lim_{f(x) \to 0} g(f(x)) = \lim_{u \to 0} g(u).
\]