Outline

1. Midterm Two Info

2. Optimization
Where to Find More Practice Problems for Midterm 2

1. Practice Midterm 2
 http://www.math.upenn.edu/~ryblair/Math103F11/index.html

2. Old Practice Midterm 2
 http://www.math.upenn.edu/~ryblair/Math 103/index.html

3. Examples done in class

4. Old Final exam problems
 http://www.math.upenn.edu/ugrad/calc/m103/oldexams.html

5. Homework
Proofs that could be on the exam

1. Use Rolle’s theorem to prove the Mean Value Theorem. Page 231.
2. Derive the formula for \(\frac{d}{dx}(f^{-1}(x)) \). Page 177
3. Derive the formula for \(\frac{d}{dx}(\sin^{-1}(x)) \). Page 188
4. Derive the formula for \(\frac{d}{dx}(\tan^{-1}(x)) \). Page 188
5. Use the Mean value theorem to show that if \(f(x) \) and \(g(x) \) are everywhere differentiable functions such that \(f'(x) = g'(x) \), then there exists a constant \(C \) such that \(f(x) = g(x) + C \). Page 233.
6. The first derivative theorem for local extreme values. Page 225.
Example
A farmer has 2400ft of fencing and wants to fence off a rectangular field that boarders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
Example
A farmer has 2400ft of fencing and wants to fence off a rectangular field that boarders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Steps to Solving Optimization Problems
1. Draw a picture representing the problem.
2. Introduce variables and find a formula for the quantity being optimized.
3. Use the information in the problem to express the quantity being optimized in terms of a single variable.
4. Use the first derivative test to find the local minima and maxima.
5. Finish solving the problem.
Example
A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

1. Draw a picture representing the problem.
2. Introduce variables and find a formula for the quantity being optimized.
3. Use the information in the problem to express the quantity being optimized in terms of a single variable.
4. Use the first derivative test to find the local minima and maxima.
5. Finish solving the problem.
Example
Find the point on the parabola $y^2 = 2x$ that is closest to the point $(1, 4)$.

1. Draw a picture representing the problem.
2. Introduce variables and find a formula for the quantity being optimized.
3. Use the information in the problem to express the quantity being optimized in terms of a single variable.
4. Use the first derivative test to find the local minima and maxima.
5. Finish solving the problem.
Example
Find the dimensions of a rectangle of largest area that can be inscribed in an equilateral triangle of side length \(L \) if one side of the rectangle lies on the base of the triangle.

1. Draw a picture representing the problem.
2. Introduce variables and find a formula for the quantity being optimized.
3. Use the information in the problem to express the quantity being optimized in terms of a single variable.
4. Use the first derivative test to find the local minima and maxima.
5. Finish solving the problem.