Outline

1 Review

2 One-Sided Limits
Definition of Limit

Definition

If \(f(x) \) is arbitrarily close to \(L \) for all \(x \) sufficiently close to \(x_0 \), we say \(f \) approaches the **limit** \(L \) as \(x \) approaches \(x_0 \) and write:

\[
\lim_{x \to x_0} f(x) = L
\]
Definition of Limit

Definition

If \(f(x) \) is arbitrarily close to \(L \) for all \(x \) sufficiently close to \(x_0 \), we say \(f \) approaches the limit \(L \) as \(x \) approaches \(x_0 \) and write:

\[
\lim_{x \to x_0} f(x) = L
\]

Last time we saw

1. Limit laws
2. Theorems regarding polynomials and rational functions
3. How to evaluate a limit if there is a zero in the denominator
The Sandwich Theorem

Theorem

If \(f(x) \leq g(x) \leq h(x) \) when \(x \) is near \(c \) and

\[
\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L
\]

then \(\lim_{x \to c} g(x) = L \)
The Sandwich Theorem

Theorem

If \(f(x) \leq g(x) \leq h(x) \) when \(x \) is near \(c \) and

\[
\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L
\]

then \(\lim_{x \to c} g(x) = L \)

Evaluate:

\[
\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)
\]
Definition of One-Sided Limit

Definition

If \(f(x) \) is arbitrarily close to \(L \) for all \(x \) sufficiently close to \(c \) and greater than \(c \), we say \(f \) approaches the right-hand limit \(L \) as \(x \) approaches \(c \) and write:

\[
\lim_{x \to c^+} f(x) = L
\]
One-Sided Limits

Definition of One-Sided Limit

Definition

If \(f(x) \) is arbitrarily close to \(L \) for all \(x \) sufficiently close to \(c \) and greater than \(c \), we say \(f \) approaches the \textbf{right-hand limit} \(L \) as \(x \) approaches \(c \) and write:

\[
\lim_{x \to c^+} f(x) = L
\]

Definition

If \(f(x) \) is arbitrarily close to \(L \) for all \(x \) sufficiently close to \(c \) and less than \(c \), we say \(f \) approaches the \textbf{left-hand limit} \(L \) as \(x \) approaches \(c \) and write:

\[
\lim_{x \to c^-} f(x) = L
\]
Theorem

\[\lim_{x \to c} f(x) = L \]

if and only if

\[\lim_{x \to c^+} f(x) = L \quad \text{and} \quad \lim_{x \to c^-} f(x) = L. \]
Theorem

\[\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \]