Math 104: Taylor series, Limits and l’Hospital’s rule

Ryan Blair

University of Pennsylvania

Thursday January 17, 2013
Outline

1 Review

2 Manipulating Taylor Series

3 l’Hospital’s rule
Taylor Series

Definition

The **Taylor series** generated by a function f at $x = a$ is

\[
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots
\]
Taylor Series

Definition

The **Taylor series** generated by a function \(f \) at \(x = a \) is

\[
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots
\]

To use this formula we need to know the values of ALL the derivatives of \(f \) at a value \(a \).
Tricks to finding Taylor Series

Problem: Find the first 3 terms of the Taylor series for
\[f(x) = \cos(x) \sin(x) \] at \(x = 0 \).
Tricks to finding Taylor Series

Problem: Find the first 3 terms of the Taylor series for $f(x) = \cos(x)\sin(x)$ at $x = 0$.

Method of Solution: Multiply the Taylor Series for $\sin(x)$ at $x = 0$ by the Taylor Series for $\cos(x)$ at $x = 0$.
Problem: Find the first 3 terms of the Taylor series for
\(f(x) = \cos(x)\sin(x) \) at \(x = 0 \).

Method of Solution: Multiply the Taylor Series for \(\sin(x) \) at \(x = 0 \) by the Taylor Series for \(\cos(x) \) at \(x = 0 \).

What is the point? Skip tedious derivative calculations.
The geometric series for $|x| > 1$

\[
\frac{1}{1 - x} = 1 + x + x^2 + x^3 + x^4 + \ldots = \sum_{k=0}^{\infty} x^k
\]

Ways to formally manipulate Series:

1. Substitution
2. Differentiation
3. Integration
Manipulating Series

Definition

The geometric series for $|x| > 1$

$$
\frac{1}{1 - x} = 1 + x + x^2 + x^3 + x^4 + \ldots = \sum_{k=0}^{\infty} x^k
$$

Ways to formally manipulate Series:

1. Substitution
2. Differentiation
3. Integration

The pay off of all of this work with Taylor series will be a greater understanding of Limits and Derivatives
Revisiting Limits

Definition

If for every $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|x - a| < \delta$ then $|f(x) - L| < \epsilon$, we say

$$\lim_{x \to a} f(x) = L$$
Revisiting Limits

Definition

If for every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that whenever \(|x - a| < \delta \) then \(|f(x) - L| < \epsilon \), we say

\[
\lim_{x \to a} f(x) = L
\]

The Game: Choose \(\epsilon > 0 \). Then find \(\delta \) such that whenever \(x \) is within \(\delta \) of \(a \), \(f(x) \) is within \(\epsilon \) of \(L \).
Revisiting Limits

Definition

If for every $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|x - a| < \delta$ then $|f(x) - L| < \epsilon$, we say

$$\lim_{x \to a} f(x) = L$$

The Game: Choose $\epsilon > 0$. Then find δ such that whenever x is within δ of a, $f(x)$ is within ϵ of L.

Examples Let $f(x) = |x|$. Find $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} f'(x)$.
The power of Taylor series when finding limits

Use your knowledge of Taylor series to find the following limits:

\[
\lim_{x \to 0} \frac{\sin(x)}{x}
\]

\[
\lim_{x \to 0} \frac{\sin(3x)}{e^x - 1}
\]

\[
\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}
\]
Theorem

If

\[\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x), \]

Then

\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}. \]