Math 104: Applications of Definite Integrals

Ryan Blair

University of Pennsylvania

Thursday February 14, 2013
Outline

1. Review
2. The Definite Integral as a Tool
3. Arc Length
4. Area In Polar Coordinates
Types of integrals

Indefinite Integrals represent families of antiderivatives

$$\int x \, dx = \frac{x^2}{2} + c$$

Indefinite integrals are useful for solving differential equations.
Types of integrals

Indefinite Integrals represent families of antiderivatives

\[\int x \, dx = \frac{x^2}{2} + c \]

Indefinite integrals are useful for solving differential equations.

Definite Integrals represent the area under the curve

\[\int_{0}^{2} x \, dx = 2 \]

Definite integrals are useful for solving problems in Geometry, Physics and Statistics.
Definition of Definite Integral

\[\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(a + \frac{b - a}{n} i) \frac{b - a}{n} \]
Fundamental theorem of calculus

Theorem

Let \(f(x) \) be a continuous function with antiderivative \(G(x) \)

1. \[
\frac{d}{dx} \left(\int_a^x f(t) \, dt \right) = f(x)
\]

2. \[
\int_a^b f(x) \, dx = G(b) - G(a)
\]

The big idea:

\[
\int d\, \cdot \cdot \cdot = \cdot \cdot \cdot
\]
The length of a curve

Let's find the length of a curve by approximating by line segments.
The length of a curve

Let's find the length of a curve by approximating by line segments.

If f is continuous on the interval $[a, b]$, then the length of the graph of f from a to b is

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2}$$
The length of a curve

Lets find the length of a curve by approximating by line segments.

If \(f \) is continuous on the interval \([a, b]\), then the length of the graph of \(f \) from \(a \) to \(b \) is

\[
L = \int_{a}^{b} \sqrt{1 + (f'(x))^2}
\]

Example: Find circumference of the circle \(x^2 + y^2 = 4 \).
To calculate area in Cartesian coordinates we integrate a function of \(y \) with respect to \(dx \) (vertical bands) or we integrate a function of \(x \) with respect to \(dy \) (horizontal bands).
Calculating area in different coordinates

To calculate area in Cartesian coordinates we integrate a function of y with respect to dx (vertical bands) or we integrate a function of x with respect to dy (horizontal bands).

To calculate area in Polar coordinates we integrate a function of $\frac{1}{2}r^2$ with respect to $d\theta$ (wedges) or we integrate a function of $2\pi r$ with respect to dr (circular bands).
Calculating area in different coordinates

To calculate area in Cartesian coordinates we integrate a function of \(y \) with respect to \(dx \) (vertical bands) or we integrate a function of \(x \) with respect to \(dy \) (horizontal bands).

To calculate area in Polar coordinates we integrate a function of \(\frac{1}{2} r^2 \) with respect to \(d\theta \) (wedges) or we integrate a function of \(2\pi r \) with respect to \(dr \) (circular bands).

Exercise: Calculate the area of the disk in three different ways: using wedges, using circular bands and using vertical bands.