Math 104: Power Series and Approximations

Ryan Blair

University of Pennsylvania

Tuesday April 16, 2013
A **Power Series** is a series and a function of the form

\[P(x) = \sum_{k=0}^{\infty} c_k (x - a)^k = c_1 + c_2(x - a) + c_3(x - a)^2 + \ldots \]

where \(x \) is a variable, the \(c_i \) are constants and we say \(P(x) \) is centered at \(a \).

Let \(R \) be the radius of convergence of \(P(x) \).

\[R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right| \]
Definition

A **Power Series** is a series and a function of the form

\[P(x) = \sum_{k=0}^{\infty} c_k (x - a)^k = c_1 + c_2 (x - a) + c_3 (x - a)^2 + \ldots \]

where \(x \) is a variable, the \(c_i \) are constants and we say \(P(x) \) is centered at \(a \).

Let \(R \) be the radius of convergence of \(P(x) \).

\[R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right| \]

If the radius of convergence of a Taylor series is \(R \), find the radius of convergence of an antiderivative and the derivative.
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the error term of order \(n \).

Theorem (Taylor’s Theorem)

Given a Taylor Series \(\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k \), if there is a constant \(M \) such that \(|f^{(n+1)}(t)| < M \) for all \(t \) between \(a \) and \(x \), then

\[|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!} \]
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the error term of order \(n \).

Theorem (Taylor’s Theorem)

Given a Taylor Series \(\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k \), if there is a constant \(M \) such that \(|f^{(n+1)}(t)| < M \) for all \(t \) between \(a \) and \(x \), then

\[|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!} \]

Moreover, if on some closed interval \(f \) is \(n \) times differentiable and this inequality holds for all \(n \), then the series converges to \(f(x) \) on that interval.
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the error term of order \(n \).

Theorem (Taylor’s Theorem)

Given a Taylor Series \(\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k \), if there is a constant \(M \) such that \(|f^{(n+1)}(t)| < M \) for all \(t \) between \(a \) and \(x \), then

\[|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!} \]

Moreover, if on some closed interval \(f \) is \(n \) times differentiable and this inequality holds for all \(n \), then the series converges to \(f(x) \) on that interval.

Uses: Can show Taylor series converges if \(|R_n(x)| \) goes to zero as \(n \) goes to infinity, Can get estimates for functions.
Examples

1. Show that the Maclaurin series for $\cos(x)$ converges to $\cos(x)$ for all x using Taylor’s Theorem.

2. Show that the Maclaurin series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ for all $x \in [-\frac{1}{2}, \frac{1}{2}]$ using Taylor’s Theorem.

3. Estimate the error for approximating e^x on $[-2, 2]$ using the first four terms of its Maclaurin Series.

4. Estimate the error for approximating $\cos(x)$ on $[-2\pi, 2\pi]$ using the first four terms of its Maclaurin Series.