Outline

1 Review of Last Time

2 linear Independence
Review of last time

1. Transpose of a matrix
2. Special types of matrices
3. Matrix properties
4. Row-echelon and reduced row echelon form
5. Solving linear systems using Gaussian and Gauss-Jordan elimination
Echelon Forms

Definition

A matrix is in **row-echelon form** if

1. Any row consisting of all zeros is at the bottom of the matrix.
2. For all non-zero rows the leading entry must be a one. This is called the **pivot**.
3. In consecutive rows the pivot in the lower row appears to the right of the pivot in the higher row.

Definition

A matrix is in **reduced row-echelon form** if it is in row-echelon form and every pivot is the only non-zero entry in its column.
Row Operations

We will be applying row operations to augmented matrices to find solutions to linear equations. This is called \textit{Gaussian} or \textit{Gauss-Jordan} elimination.

Here are the row operations:

1. Multiply a row by a number.
2. Switch rows.
3. Add a multiple of one row to another.
We will be applying row operations to augmented matrices to find solutions to linear equations. This is called Gaussian or Gauss-Jordan elimination.

Here are the row operations:

1. Multiply a row by a number.
2. Switch rows.
3. Add a multiple of one row to another.

Key Fact: If you alter an augmented matrix by row operations you preserve the set of solutions to the linear system.
Today’s Goals

1. Be able to use rank of a matrix to determine if vectors are linearly independent.

2. Be able to use rank of an augmented matrix to determine consistency or inconsistency of a system.
Linear Independence

Definition

Let $v_1, ..., v_m$ be vectors in \mathbb{R}^n. The set $S = \{v_1, ..., v_m\}$ is **linearly independent** if $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ implies $c_1 = c_2 = ... = c_n = 0$.

If there exists a non trivial solution to $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ we say the set S is linearly dependant.
Linear Independence

Definition

Let $v_1, ..., v_m$ be vectors in \mathbb{R}^n. The set $S = \{v_1, ..., v_m\}$ is **linearly independent** if $c_1 v_1 + c_2 v_2 + ... + c_n v_n = 0$ implies $c_1 = c_2 = ... = c_n = 0$.

If there exists a non trivial solution to $c_1 v_1 + c_2 v_2 + ... + c_n v_n = 0$ we say the set S is linearly dependant.

Example: Are the following vectors linearly independent?

$< 1, 2, 1 >, < 1, 1, 0 >, < 1, 0, 1 >$
Definition

Let A be an $m \times n$ matrix. The **rank** of A is the maximal number of linearly independent row vectors.

Definition

(Pragmatic)

Let A be an $m \times n$ matrix and B be its row-echelon form. The **rank** of A is the number of pivots of B.
Definition

Let A be an $m \times n$ matrix. The **rank** of A is the maximal number of linearly independent row vectors.

Example What is the rank of the following matrix.

\[
\begin{pmatrix}
2 & 0 & 1 & -1 \\
0 & 1 & 2 & 1 \\
2 & -1 & -1 & -2
\end{pmatrix}
\]
Determining Linear independence Using Matrices

How to find if m vectors are linearly independent:

1. Make the vectors the rows of a $m \times n$ matrix (where the vectors are of size n)
2. Find the rank of the matrix.
3. If the rank is m then the vectors are linearly independent. If the rank is less than m, then the vectors are linearly dependant.
Determining Linear independence Using Matrices

How to find if \(m \) vectors are linearly independent:

1. Make the vectors the rows of a \(m \times n \) matrix (where the vectors are of size \(n \))
2. Find the rank of the matrix.
3. If the rank is \(m \) then the vectors are linearly independent. If the rank is less than \(m \), then the vectors are linearly dependant.

Example: Are the following vectors linearly independent?

\[
\langle -2, 0, 4, 1 \rangle, \langle 0, 0, 1, -1 \rangle, \langle 0, 1, 0, 1 \rangle, \langle 3, 2, -3, 0 \rangle
\]
Determining Consistency

Given the linear system $Ax = B$ and the augmented matrix $(A|B)$.

1. If $\text{rank}(A) = \text{rank}(A|B) =$ the number of rows in x, then the system has a unique solution.

2. If $\text{rank}(A) = \text{rank}(A|B) <$ the number of rows in x, then the system has ∞-many solutions.

3. If $\text{rank}(A) < \text{rank}(A|B)$, then the system is inconsistent.