Today’s Goals

Understand the form of solutions to the following types of higher order, linear differential equations

1. Initial Value Problems
2. Boundary Value Problems
3. Homogeneous and Nonhomogeneous Equations.
A Few Famous Differential Equations

1. Einstein’s field equation in general relativity
2. The Navier-Stokes equations in fluid dynamics
3. Verhulst equation - biological population growth
4. The Black-Scholes PDE - models financial markets
Higher Order Initial Value Problems

Definition

For a linear differential equation, an **nth-order initial value problem** (IVP) is

\[
\text{Solve : } a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)
\]

Subject to: \(y(x_0) = y_0, \ y'(x_0) = y_1, \ \ldots, y^{(n-1)}(x_0) = y_{n-1}\)
Existence and Uniqueness

Theorem

Let $a_n(x), a_{n-1}(x), \ldots, a_1(x), a_0(x)$, and $g(x)$ be continuous on and interval I, and let $a_n(x) \neq 0$ for every x in this interval. If $x = x_0$ is any point in this interval, then a solution $y(x)$ of the initial value problem exists on the interval and is unique.
Existence and Uniqueness

Theorem

Let $a_n(x), a_{n-1}(x), \ldots, a_1(x), a_0(x)$, and $g(x)$ be continuous on and interval I, and let $a_n(x) \neq 0$ for every x in this interval. If $x = x_0$ is any point in this interval, then a solution $y(x)$ of the initial value problem exists on the interval and is unique.

Example: Does the following IVP have a unique solution? If so, on what intervals?

$y''' + y'' - y' - y = 9$ with $y(2) = 0$, $y'(2) = 0$ and $y''(2) = 0$
Boundary Value Problem

Definition

For a linear differential equation, an **nth-order boundary value problem** (BVP) is

\[
\begin{align*}
\text{Solve: } & \quad a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots a_1(x) \frac{dy}{dx} + a_0(x)y = g(x) \\
\text{Subject to } & \quad n \text{ equations that specify the value of } y \text{ and its derivatives at different points (called boundary conditions).}
\end{align*}
\]
Boundary Value Problem

Definition

For a linear differential equation, an **nth-order boundary value problem** (BVP) is

\[a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x) \]

Subject to \(n \) equations that specify the value of \(y \) and its derivatives at different points (called **boundary conditions**).

Question: What are the possible boundary conditions for a second order linear D.E.
One, Many or No Solutions

A BVP may have one, ∞-many, or no solutions.

Example: $x'' + 16x = 0$
Homogeneous and Nonhomogeneous

Definition

An nth-order differential equation of the following form is said to be **homogeneous**. Otherwise we say the equation is **nonhomogeneous**.

\[
Solve: \quad a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots a_1(x) \frac{dy}{dx} + a_0(x)y = 0
\]
Theorem

(The Superposition Principle) Let \(y_1, y_2, \ldots, y_k \) be solutions to a homogeneous nth-order differential equation on an interval \(I \). Then any linear combination

\[
y = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_k y_k(x)
\]

is also a solution, where \(c_1, c_2, \ldots, c_k \) are constants.
A set of functions $f_1(x), f_2(x), \ldots, f_n(x)$ is **linearly dependent** on an interval I if there exist constants c_1, c_2, \ldots, c_n, not all zero, such that

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$

for every x in the interval. A set of functions that is not linearly dependent is said to be **Linearly Independent**.
The Wronskian

Definition

Suppose each of the functions \(f_1(x), f_2(x), \ldots, f_n(x) \) possess at least \(n - 1 \) derivatives. The determinant

\[
W(f_1, f_2, \ldots, f_n) = \begin{vmatrix}
 f_1 & f_2 & \ldots & f_n \\
 f'_1 & f'_2 & \ldots & f'_n \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1^{(n-1)} & f_2^{(n-1)} & \ldots & f_n^{(n-1)}
\end{vmatrix}
\]

is called the Wronskian of the functions.
Theorem

Let \(y_1, y_2, \ldots, y_n \) be \(n \) solutions to a homogeneous linear \(n \)th-order differential equation on an interval \(I \). The set of solutions is \textbf{linearly independent} on \(I \) if and only if \(W(y_1, y_2, \ldots, y_n) \neq 0 \) for every \(x \) in the interval. If the solutions \(y_1, y_2, \ldots, y_n \) are linearly independent they are said to be a \textbf{fundamental set of solutions}.

Note: There always exists a fundamental set of solutions to an \(n \)th-order linear homogeneous differential equation on an interval \(I \).
General Solution

Theorem

Let \(y_1, y_2, \ldots, y_n \) be a fundamental set of solutions to an \(n \)th-order linear homogeneous differential equation on an interval \(I \). Then the general solution of the equation on the interval is

\[
y = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x)
\]

where the \(c_i \) are arbitrary constants.
Theorem

Let y_p be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$y = c_1y_1(x) + c_2y_2(x) + ... + c_ny_n(x) + y_p$$

where the c_i are arbitrary constants.
Superposition Principle for Nonhomogeneous Equations

Theorem

Suppose \(y_{p_i} \) denotes a particular solution to the differential equation

\[
a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1(x) \frac{dy}{dx} + a_0(x)y = g_i(x)
\]

Where \(i = 1, 2, \ldots, k \). Then \(y_p = y_{p_1} + y_{p_2} + \ldots + y_{p_k} \) is a particular solution of

\[
a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1(x) \frac{dy}{dx} + a_0(x)y =
\]

\[
g_1(x) + g_2(x) + \ldots + g_k(x)
\]