Outline

1. Review
2. Today’s Goals
3. Cauchy-Euler Equations
4. Spring-Mass Systems with Undamped Motion
Learned how to solve nonhomogeneous linear differential equations using the method of Undetermined Coefficients.
The general solution to a linear nonhomogeneous differential equation is

\[y_g = y_h + y_p \]

Where \(y_h \) is the solution to the corresponding homogeneous DE and \(y_p \) is any particular solution.
The Guessing Rule

For a constant-coefficient nonhomogeneous linear DE, the form of y_p is a linear combination of all linearly independent functions that are generated by repeated differentiation of $g(x)$.
The Guessing Rule

For a constant-coefficient nonhomogeneous linear DE, the form of y_p is a linear combination of all linearly independent functions that are generated by repeated differentiation of $g(x)$.

Example: Find the general solution to

$$y'' - y' = 4$$
The Fix to the Duplication Problem

When the natural guess for a particular solution duplicates a homogeneous solution, multiply the guess by x^n, where n is the smallest positive integer that eliminates the duplication.
Today’s Goals

1. Learn how to solve Cauchy-Euler Equations.
2. Learn how to model spring/mass systems with undamped motion.
Goal: To solve homogeneous DEs that are not constant-coefficient.
Cauchy-Euler Equations

Goal: To solve homogeneous DEs that are not constant-coefficient.

Definition

Any linear differential equation of the form

\[a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1 x \frac{dy}{dx} + a_0 y = g(x) \]

is a **Cauchy-Euler equation**.
The 2nd Order Case

Try to solve

$$ax^2 \frac{d^2y}{dx^2} + bx \frac{dy}{dx} + \ldots cy = 0$$

by substituting $y = x^m$.
The 2nd Order Case

Try to solve

$$ax^2 \frac{d^2 y}{dx^2} + bx \frac{dy}{dx} + \ldots cy = 0$$

by substituting $y = x^m$.

If m_1 and m_2 are distinct real roots to $am(m - 1) + bm + c = 0$, then the general solution to this DE is

$$y = c_1 x^{m_1} + c_2 x^{m_2}$$
For a higher order homogeneous Cauchy-Euler Equation, if \(m \) is a root of multiplicity \(k \), then

\[
x^m, \ x^m \ln(x), \ldots, x^m (\ln(x))^{k-1}
\]

are \(k \) linearly independent solutions.
For a higher order homogeneous Cauchy-Euler Equation, if m is a root of multiplicity k, then

$$x^m, \quad x^m \ln(x), \quad \ldots, \quad x^m (\ln(x))^{k-1}$$

are k linearly independent solutions.

Example: What is the solution to

$$x^3 y''' + xy' - y = 0$$
Conjugate Complex Roots

Given the DE

\[ax^2 \frac{d^2y}{dx^2} + bx \frac{dy}{dx} + \ldots cy = 0 \]

If \(am(m - 1) + bm + c = 0 \) has complex conjugate roots \(\alpha + i\beta \) and \(\alpha - i\beta \), then the general solution is

\[y_g = x^\alpha [c_1 \cos(\beta \ln(x)) + c_2 \sin(\beta \ln(x))] \]
Conjugate Complex Roots

Given the DE

\[ax^2 \frac{d^2 y}{dx^2} + bx \frac{dy}{dx} + \ldots cy = 0 \]

If \(am(m-1) + bm + c = 0 \) has complex conjugate roots \(\alpha + i\beta \) and \(\alpha - i\beta \), then the general solution is

\[y_g = x^\alpha [c_1 \cos(\beta \ln(x)) + c_2 \sin(\beta \ln(x))] \]

Example: Solve \(25x^2 y'' + 25xy' + y = 0 \)
A flexible spring of length l is suspended vertically from a rigid support.
A flexible spring of length l is suspended vertically from a rigid support.

A mass m is attached to its free end, the amount of stretch s depends on the mass.
A flexible spring of length \(l \) is suspended vertically from a rigid support.

A mass \(m \) is attached to its free end, the amount of stretch \(s \) depends on the mass.

Hooke’s Law: The spring exerts a restoring force \(F \) opposite to the direction of elongation and proportional to the amount of elongation.

\[
F = ks
\]

Note: \(k \) is called the spring constant
Newton’s Second Law

The weight \(W = mg \) is balanced by the restoring force \(ks \) at the equilibrium position. \(mg = ks \)
Newton’s Second Law

1. The weight \((W = mg)\) is balanced by the restoring force \(ks\) at the equilibrium position. \(mg = ks\)

2. If we displace from equilibrium by distance \(x\) the restoring force becomes \(k(x + s)\).
Newton’s Second Law

1. The weight \((W = mg)\) is balanced by the restoring force \(ks\) at the equilibrium position. \(mg = ks\)
2. If we displace from equilibrium by distance \(x\) the restoring force becomes \(k(x + s)\).

Assuming free motion, **Newton’s Second Law** states

\[
m \frac{d^2x}{dt^2} = -k(s + x) + mg = -kx
\]
Question: What are the solutions to

\[m \frac{d^2 x}{dt^2} + kx = 0? \]
Question: What are the solutions to

\[m \frac{d^2x}{dt^2} + kx = 0? \]

If \(\omega^2 = \frac{k}{m} \) then the solutions are

\[x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) \]