Outline

1. Spanning

2. Linear Independence
Today’s Goals

1. Be able to determine if a set of vectors spans a vector subspace.
2. Be able to determine if a set of vectors is linearly independent.
The span of a set of vectors

Definition

A set of vectors $v_1, v_2, ..., v_n$ spans a vector space V if every vector in V can be written as $c_1v_1 + c_2v_2 + ... + c_nv_n$ where c_i is a scalar for $1 \leq i \leq n$.

In this case we say V is spanned by $v_1, v_2, ..., v_n$.
The span of a set of vectors

Definition

A set of vectors v_1, v_2, \ldots, v_n spans a vector space V if every vector in V can be written as $c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$ where c_i is a scalar for $1 \leq i \leq n$.

In this case we say V is spanned by v_1, v_2, \ldots, v_n.

Exercise: Show that $\{(1, 2, 1), (1, 0, 1), (0, 1, 1)\}$ spans \mathbb{R}^3.
The span of a set of vectors

Definition

A set of vectors v_1, v_2, \ldots, v_n spans a vector space V if every vector in V can be written as $c_1v_1 + c_2v_2 + \ldots + c_nv_n$ where c_i is a scalar for $1 \leq i \leq n$.

In this case we say V is spanned by v_1, v_2, \ldots, v_n.

Exercise: Show that $\{(1, 2, 1), (1, 0, 1), (0, 1, 1)\}$ spans \mathbb{R}^3.

Exercise: Show that $\{(1, 2, 1), (1, 0, 1), (0, 1, 0)\}$ does not span \mathbb{R}^3.
Linear Independence

Definition
Let v_1, \ldots, v_m be vectors in a vector space V. The set $S = \{v_1, \ldots, v_m\}$ is **linearly independent** if $c_1 v_1 + c_2 v_2 + \ldots + c_n v_n = 0$ implies $c_1 = c_2 = \ldots = c_n = 0$.

If there exists a non trivial solution to $c_1 v_1 + c_2 v_2 + \ldots + c_n v_n = 0$ we say the set S is linearly dependant.
Linear Independence

Definition

Let $v_1, ..., v_m$ be vectors in a vector space V. The set $S = \{v_1, ..., v_m\}$ is **linearly independent** if $c_1 v_1 + c_2 v_2 + ... + c_n v_n = 0$ implies $c_1 = c_2 = ... = c_n = 0$.

If there exists a non trivial solution to $c_1 v_1 + c_2 v_2 + ... + c_n v_n = 0$ we say the set S is linearly dependant.

Exercise: Are the following vectors linearly independent?

$$<1, 2, 1>, <1, 0, 1>, <0, 1, 1>$$