Math 240: Eigenvalues and Linear Transformations of \mathbb{R}^2

Ryan Blair

University of Pennsylvania

Monday November 5, 2012
Outline

1. Invertible Linear Transformations from \mathbb{R}^2 to \mathbb{R}^2

2. Eigenvalue and Eigenvector
Today’s Goals

1. Know how to decompose linear transformations of \mathbb{R}^2 into stretches, reflections and shears.
2. Know how to calculate eigenvalues and eigenvectors.
How to build any invertible linear transformation

Theorem

Any linear transformations from \mathbb{R}^2 to \mathbb{R}^2 with invertible matrix is obtained by composing reflections, stretches and shears.
Row Operations as Linear Transformations for 2x2 Matrices

Reflections

\[P_{12} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

Stretching

\[M_1(k) = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}, \quad M_2(k) = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \]

Shearing

\[A_{21}(k) = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, \quad A_{12}(k) = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \]
Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an eigenvector. If $Ax = \lambda x$ has a non-trivial solution, λ is an eigenvalue.
Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Only square matrices have eigenvectors.
Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an eigenvector. If $Ax = \lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors.

Key idea: Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to A.
How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ.

$Ax = \lambda x$

$Ax - \lambda x = 0$

$(A - \lambda I_n)x = 0$
How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ.

$Ax = \lambda x$

$Ax - \lambda x = 0$

$(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must not be invertible.
How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ.

$Ax = \lambda x$

$Ax - \lambda x = 0$

$(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must not be invertible.

Hence, to find the eigenvalues, we solve the polynomial equation $det(A - \lambda I_n) = 0$ called the characteristic equation.
How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ.

$Ax = \lambda x$

$Ax - \lambda x = 0$

$(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must not be invertible.

Hence, to find the eigenvalues, we solve the polynomial equation

$det(A - \lambda I_n) = 0$ called the characteristic equation.

For each eigenvalue λ, solve the linear system $(A - \lambda I_n)x = 0$ to find the eigenvectors.