Math 240: Spring-Mass Systems

Ryan Blair

University of Pennsylvania

Wednesday December 5, 2012
Outline

1. Today’s Goals
2. Review
3. Spring-Mass Systems with Undamped Motion
4. Spring/Mass Systems with Damped Motion
Today’s Goals

1. Learn how to solve spring/mass systems.
The Method of Undetermined Coefficients

To solve a nonhomogeneous constant coefficient linear differential equation
The Method of Undetermined Coefficients

To solve a nonhomogeneous constant coefficient linear differential equation

1. Step 1: Solve the associated homogeneous equation.
The Method of Undetermined Coefficients

To solve a nonhomogeneous constant coefficient linear differential equation

1. Step 1: Solve the associated homogeneous equation.
2. Step 2: Find a particular solution by making a guess based on $g(x)$.
The Method of Undetermined Coefficients

To solve a nonhomogeneous constant coefficient linear differential equation

1. Step 1: Solve the associated homogeneous equation.
2. Step 2: Find a particular solution by making a guess based on $g(x)$.
3. Step 3: Add the homogeneous solution and the particular solution together to get the general solution.
Spring-Mass Systems with Undamped Motion

A flexible spring of length l_0 is suspended vertically from a rigid support.
Spring-Mass Systems with Undamped Motion

A flexible spring of length l_0 is suspended vertically from a rigid support.

A mass m is attached to its free end, the amount of stretch L_0 depends on the mass.
Spring-Mass Systems with Undamped Motion

A flexible spring of length l_0 is suspended vertically from a rigid support.

A mass m is attached to its free end, the amount of stretch L_0 depends on the mass.

Hooke’s Law: The spring exerts a restoring force F_s opposite to the direction of elongation and proportional to the amount of elongation.

$$F_s = -kL_0$$
Newton’s Second Law

The force due to gravity ($F_g = mg$) is balanced by the restoring force $-kL_0$ at the equilibrium position.

$mg = kL_0$
Newton’s Second Law

1. The force due to gravity \(F_g = mg \) is balanced by the restoring force \(-kL_0\) at the equilibrium position.
\[mg = kL_0 \]

2. If we displace from equilibrium by distance \(y \) the restoring force becomes \(k(y + L_0) \).
Newton’s Second Law

1. The force due to gravity \((F_g = mg) \) is balanced by the restoring force \(-kL_0\) at the equilibrium position.
 \[mg = kL_0 \]

2. If we displace from equilibrium by distance \(y \) the restoring force becomes \(k(y + L_0) \).

Assuming free motion, **Newton’s Second Law** states

\[
m\frac{d^2y}{dt^2} = -k(L_0 + y) + mg = -ky
\]
Solutions to Undamped Spring Equation

Question: What are the solutions to

\[m \frac{d^2y}{dt^2} + ky = 0? \]
Question: What are the solutions to

\[m\frac{d^2y}{dt^2} + ky = 0? \]

If \(\omega_0^2 = \frac{k}{m} \) then the solutions are

\[y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t). \]

Example: A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/sec. Find the equation of motion.
Undamped motion is unrealistic. Instead assume we have a damping force proportional to the instantaneous velocity.
Undamped motion is unrealistic. Instead assume we have a damping force proportional to the instantaneous velocity.

\[m \frac{d^2 y}{dt^2} + c \frac{dy}{dt} + ky = 0 \]

is now our model, where \(m \) is the mass, \(k \) is the positive spring constant, \(c \) is the positive damping constant and \(y(t) \) is the position of the mass at time \(t \).
Changing Variables

Let

\[2\lambda = \frac{c}{m} \quad \text{and} \quad \omega_0^2 = \frac{k}{m}. \]
Changing Variables

Let

\[2\lambda = \frac{c}{m} \quad \text{and} \quad \omega_0^2 = \frac{k}{m}. \]

Then our damped motion D.E. becomes

\[\frac{d^2y}{dt^2} + 2\lambda \frac{dy}{dt} + \omega_0^2 y = 0. \]
Changing Variables

Let

\[2\lambda = \frac{c}{m} \quad \text{and} \quad \omega_0^2 = \frac{k}{m}. \]

Then our damped motion D.E. becomes

\[\frac{d^2y}{dt^2} + 2\lambda \frac{dy}{dt} + \omega_0^2 y = 0 \]

and the roots of the Aux. Equation become

\[m_1 = -\lambda + \sqrt{\lambda^2 - \omega_0^2} \quad \text{and} \quad m_2 = -\lambda - \sqrt{\lambda^2 - \omega_0^2} \]
Case 1: Overdamped

If $\lambda^2 - \omega_0^2 > 0$ the system is **overdamped** since c is large when compared to k. In this case the solution is

$$y = e^{-\lambda t}(c_1 e^{\sqrt{\lambda^2 - \omega_0^2} t} + c_2 e^{-\sqrt{\lambda^2 - \omega_0^2} t}).$$
Case 2: Critically Damped

If $\lambda^2 - \omega_0^2 = 0$ the system is critically damped since a slight decrease in the damping force would result in oscillatory motion. In this case the solution is

$$y = e^{-\lambda t}(c_1 + c_2 t)$$
Case 3: Underdamped

If \(\lambda^2 - \omega_0^2 < 0 \) the system is underdamped since \(k \) is large when compared to \(c \). In this case the solution is

\[
y = e^{-\lambda t}(c_1 \cos(\sqrt{\omega_0^2 - \lambda^2} t) + c_2 \sin(\sqrt{\omega_0^2 - \lambda^2} t))
\]
Example

A 4 meter spring measures 8 meters long after a force of 16 newtons acts to it. A mass of 8 kilograms is attached to the spring. The medium through which the mass moves offers a damping force equal to $\sqrt{2}$ times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 5 meters/sec.