Math 240: Surface Integrals

Ryan Blair

University of Pennsylvania

Monday Sept. 17, 2012
Outline

1. Today’s Goals
2. Review
3. Surface Integrals
Today’s Goals

1. Review of surface area for a parameterized surfaces.
2. Be able to evaluate Surface Integrals.
Surface Area of a Parameterized Surface

Given a parametrization $\mathbf{X} : D \rightarrow \mathbb{R}^3$ such that $X(s, t) = (x(s, t), y(s, t), z(s, t))$.

The surface area of $S = \mathbf{X}(D)$ is equal to

$$\int \int_D \| T_s \times T_t \| \, dsdt$$
Scalar Surface Integrals

Definition

Let \(\mathbf{X} : D \rightarrow \mathbb{R}^3 \) be a smooth parametrized surface, where \(D \) is a region in \(\mathbb{R}^2 \). Let \(f : \mathbf{X}(D) \rightarrow \mathbb{R} \) be a continuous function. Then the **scalar surface integral** of \(f \) along \(\mathbf{X} \) is

\[
\int \int_{\mathbf{X}} f \, dS = \int \int_{D} f(\mathbf{X}(s, t)) \parallel T_s \times T_t \parallel \, dsdt
\]

Example Find \(\int \int_{S} x^2 + y^2 \, dS \), where \(S \) is the outward oriented lateral surface of the cylinder of radius \(a \) and height \(h \) whose axis is the \(z \)-axis.
Vector Surface Integrals

Definition

Let $\mathbf{X} : D \rightarrow \mathbb{R}^3$ be a smooth parametrized surface, where D is a region in \mathbb{R}^2. Let $\mathbf{F}(x, y, z)$ be a continuous function. Then the vector surface integral (or Flux) of \mathbf{F} along \mathbf{X} is

$$\int \int_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \int \int_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) dsdt$$

where $\mathbf{N}(s, t) = T_s \times T_t$.

Example

Find the flux of $\mathbf{F} = xi + yj + zk$ across the surface S consisting of the triangular region of the plane $2x - 2y + z = 2$ that is cut out by the coordinate planes. Use an upward-pointing normal to orient S.
Orientation

Definition
An **orientable** surface has two sides that can be painted red and blue resp.

Definition
If a parameterized surface S is orientable, then an **orientation** is a choice of one of two normal vectors.

$$N_1 = T_s \times T_t$$

or

$$N_2 = T_t \times T_s = -N_1$$