Outline

1 Operations on Matrices
Goals

1. Matrix basics
2. Add and subtract matrices
3. Multiply a matrix by a scalar
4. Multiply matrices
5. Take the transpose of a matrix
6. Special types of matrices
7. Matrix properties
Definition

A **matrix** is a rectangular array of numbers or functions with m rows and n columns.
A **matrix** is a rectangular array of numbers or functions with m rows and n columns.

\[
X = \begin{pmatrix}
 x_{1,1} & x_{1,2} & \ldots & x_{1,n} \\
 x_{2,1} & x_{2,2} & \ldots & x_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{m,1} & x_{m,2} & \ldots & x_{m,n}
\end{pmatrix} = (x_{i,j})_{m \times n}
\]
A matrix is a rectangular array of numbers or functions with m rows and n columns.

$$X = \begin{pmatrix}
x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\
x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m,1} & x_{m,2} & \cdots & x_{m,n}
\end{pmatrix} = (x_{i,j})_{m \times n}$$

The **dimension** of a matrix is (the number of Rows) \times (the number of columns).
A Quick Review

Definition

A **matrix** is a rectangular array of numbers or functions with *m* rows and *n* columns.

\[
X = \begin{pmatrix}
 x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\
 x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{m,1} & x_{m,2} & \cdots & x_{m,n}
\end{pmatrix} = (x_{i,j})_{m \times n}
\]

The **dimension** of a matrix is (the number of Rows) × (the number of columns). Two Matrices are equal if they have the same dimension and corresponding entries are equal.
Matrix Operations
Matrix Operations

1. Matrix Addition: \((a_{ij})_{m \times n} + (b_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n}\)
Matrix Operations

1. Matrix Addition: $(a_{ij})_{m\times n} + (b_{ij})_{m\times n} = (a_{ij} + b_{ij})_{m\times n}$

2. Scalar Multiplication: $k(a_{ij})_{m\times n} = (ka_{ij})_{m\times n}$
Matrix Operations

1. Matrix Addition: \((a_{ij})_{m \times n} + (b_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n}\)

2. Scalar Multiplication: \(k(a_{ij})_{m \times n} = (ka_{ij})_{m \times n}\)

3. Matrix multiplication: The \(ij\) entry is the dot product of the \(i\)-th row of the matrix on the left with the \(j\)-th column of the matrix on the right.
Matrix Operations

1. Matrix Addition: \((a_{ij})_{m\times n} + (b_{ij})_{m\times n} = (a_{ij} + b_{ij})_{m\times n}\)
2. Scalar Multiplication: \(k(a_{ij})_{m\times n} = (ka_{ij})_{m\times n}\)
3. Matrix multiplication: The \(ij\) entry is the dot product of the \(i\)-th row of the matrix on the left with the \(j\)-th column of the matrix on the right.
4. Matrix Transpose: \((a_{ij})^T_{m\times n} = (a_{ji})_{n\times m}\) (Rows of \(A\) become columns of \(A^T\) and columns of \(A\) become rows of \(A^T\).)
Definition

A matrix is **symmetric** if $A^T = A$
Special Matrices

Definition
A matrix is **symmetric** if $A^T = A$

Definition
A matrix is **square** if it is of size $n \times n$.
Operations on Matrices

Special Matrices

Definition
A matrix is **symmetric** if $A^T = A$.

Definition
A matrix is **square** if it is of size $n \times n$.

Definition
A matrix A is **diagonal** if it is square and the only non-zero entries are of the form a_{ii} for some i.
Special Matrices

Definition

A matrix is **symmetric** if $A^T = A$.

Definition

A matrix is **square** if it is of size $n \times n$.

Definition

A matrix A is **diagonal** if it is square and the only non-zero entries are of the form a_{ii} for some i.

Definition

The **identity matrix of dimension** n, denoted I_n, is the $n \times n$ diagonal matrix where all the diagonal entries are 1.
Special Matrices

Definition

A matrix is **skew symmetric** if $A^T = -A$
Special Matrices

Definition
A matrix is **skew symmetric** if $A^T = -A$.

Definition
A matrix is **upper triangular** if all entries below the diagonal are zero.
Operations on Matrices

Special Matrices

Definition
A matrix is **skew symmetric** if $A^T = -A$

Definition
A matrix is **upper triangular** if all entries below the diagonal are zero.

Definition
A matrix A is **lower triangular** if all entries above the diagonal are zero.
Special Matrices

Definition
A matrix is **skew symmetric** if $A^T = -A$

Definition
A matrix is **upper triangular** if all entries below the diagonal are zero.

Definition
A matrix A is **lower triangular** if all entries above the diagonal are zero.

Definition
The **trace** of a square matrix is the sum of the diagonal entries.
Matrix Properties

Let A and B be $m \times n$ matrices. Let k and p be scalars.

1. $A + B = B + A$
2. $A + (B + C) = (A + B) + C$
3. $k(A + B) = kA + kB$
4. $(k + p)A = kA + pA$

Let 0 be the $m \times n$ matrix of all zeros

1. $A + 0 = A$
2. $A - A = 0$
3. $kA = 0$ implies $k = 0$ or $A = 0$.
More Matrix Properties

1. \(A(BC) = (AB)C \)
2. \(A(B + C) = AB + AC \)
3. \((A + B)C = AC + BC \)
4. \(k(AB) = (kA)B = A(kB) \)
5. \(I_mA = A \)
6. \(AI_n = A \)
Even More Matrix Properties

1. $(A^T)^T = A$
2. $(kA)^T = kA^T$
3. $(A + B)^T = A^T + B^T$
4. $(AB)^T = B^T A^T$