Math 240: Double Integrals in Polar Coordinates and Green’s Theorem

Ryan Blair

University of Pennsylvania

Friday January 23, 2012
Outline

1. Today’s Goals
2. Review Problem
3. Green’s Theorem
Today’s Goals

1. Review the calculation of double integrals in polar coordinates.
2. Review Green’s Theorem.
Example: For the region R bounded by $y = x$, $x + y = 4$ and $x = 0$ evaluate

$$\int \int_R x + 1 dA$$
Evaluation of Double Integrals in Polar Coordinates

Theorem

Let \(f \) be continuous on a region \(R \).

If \(R \) is Type PI, then

\[
\int \int_R f(r, \theta)\,dA = \int_a^b \int_{g_1(\theta)}^{g_2(\theta)} f(r, \theta)\,r\,dr\,d\theta
\]

If \(R \) is Type PII, then

\[
\int \int_R f(r, \theta)\,dA = \int_a^b \int_{h_1(r)}^{h_2(r)} f(r, \theta)\,r\,d\theta\,dr
\]

If \(R \) is Type PIII, then

\[
\int \int_R f(r, \theta)\,dA = \int_a^b \int_{h_1(r)}^{h_2(r)} f(r, \theta)\,r\,d\theta\,dr
\]
Review Problem

Change of Coordinates

If a region in the plane can be describe in polar coordinates as

\[0 \leq g_1(\theta) \leq r \leq g_2(\theta), \quad \alpha \leq \theta \leq \beta \]

then we have the following conversion formula

\[
\int \int_R f(x, y) dA = \int_{\alpha}^{\beta} \int_{g_1(\theta)}^{g_2(\theta)} f(rcos(\theta), rsin(\theta)) r dr d\theta
\]
Change of Coordinates

If a region in the plane can be describe in polar coordinates as

$$0 \leq g_1(\theta) \leq r \leq g_2(\theta), \quad \alpha \leq \theta \leq \beta$$

then we have the following conversion formula

$$\int \int_R f(x, y) \, dA = \int_\alpha^\beta \int_{g_1(\theta)}^{g_2(\theta)} f(rcos(\theta), rsin(\theta)) \, r \, dr \, d\theta$$

Example Evaluate

$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$$
Green’s Theorem

Theorem (Green’s Theorem)

Suppose C is a piecewise smooth simple closed curve bounding a region R. If P, Q, $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are continuous on R, then

$$\oint_C P \, dx + Q \, dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA,$$

where C is oriented counterclockwise.