Outline

1. Review

2. Today’s Goals
Stokes’ Theorem

Theorem

Let S be an nice oriented surface bounded by a nice curve C. Let $F = Pi + Qj + Rk$ be a nice vector field. If C is traversed in the positive direction and T is the unit tangent vector to C then

$$\oint_C F \circ dr = \oint_C (F \circ T) ds = \int \int_S (\text{curl}(F) \circ n) dS$$

where n is the unit normal to S in the direction of the orientation of S.

Review Question: Let $F = \langle y^2, 2z + x, 2y^2 \rangle$. Find a plane $ax + by + cz = 0$ such that $\oint_C F \circ dr = 0$ for every smooth simple closed curve C in the plane.
1. Understand how to use the Divergence Theorem.
Today's Goals

Divergence Theorem

Let D be a **nice** region in 3-space with **nice** boundary S oriented outward. Let F be a **nice** vector field. Then

$$
\int \int_S (F \circ n) dS = \int \int \int_D \text{div}(F) dV
$$

where n is the unit normal vector to S.

Theorem
Divergence Theorem

Theorem

Let D be a **nice** region in 3-space with **nice** boundary S oriented outward. Let F be a **nice** vector field. Then

$$\iiint_S (F \circ n) dS = \iiint_D \text{div}(F) dV$$

where n is the unit normal vector to S.

Example Find the flux of $F = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$ outward through the surface of the cube cut from the first octant by the planes $x = 1$, $y = 1$ and $z = 1$.
Divergence Theorem

Theorem

Let D be a **nice** region in 3-space with **nice** boundary S oriented outward. Let F be a **nice** vector field. Then

$$\int \int S (F \circ n) dS = \int \int \int_D \text{div}(F) dV$$

where n is the unit normal vector to S.

Example: Use the divergence theorem to evaluate $\int \int S (F \cdot n) dS$ where $F = \langle x + y, z, z - x \rangle$ and S is the boundary of the region between $z = 9 - x^2 - y^2$ and the xy-plane.
Divergence Theorem

Let D be a closed and bounded region in 3-space with a piecewise smooth boundary S that is oriented outward. Let $F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k$ be a vector field for which P, Q and R are continuous and have continuous first partial derivatives in a region of 3-space containing D. Then

$$\int \int_S (F \circ n) dS = \int \int \int_D \text{div}(F) dV$$

where n is the unit normal vector to S.

Ryan Blair (U Penn) Math 240: Divergence Theorem Monday February 6, 2012 6 / 6
Divergence Theorem

Theorem
Let D be a closed and bounded region in 3-space with a piecewise smooth boundary S that is oriented outward. Let $F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k$ be a vector field for which P, Q and R are continuous and have continuous first partial derivatives in a region of 3-space containing D. Then

$$
\int \int_S (F \circ n) dS = \int \int \int_D \text{div}(F) dV
$$

where n is the unit normal vector to S.

Example Find the outward flux of

$$
\frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}
$$

across the region D given by $0 \leq a^2 \leq x^2 + y^2 + z^2 \leq b^2$.

Ryan Blair (U Penn)
Math 240: Divergence Theorem
Monday February 6, 2012