Math 240: Undetermined Coefficients

Ryan Blair

University of Pennsylvania

Monday, March 19, 2012
Outline

1. Today’s Goals
2. Review
3. Undetermined Coefficients
Use the method of undetermined coefficients to solve the nonhomogeneous differential equations.
Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation

\[a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \ldots a_1 \frac{dy}{dx} + a_0 y = 0, \]

the Auxiliary Equation is

\[a_n m^n + a_{n-1} m^{n-1} + \ldots a_1 m + a_0 = 0. \]
Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation

\[a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \ldots a_1 \frac{dy}{dx} + a_0 y = 0, \]

the **Auxiliary Equation** is

\[a_n m^n + a_{n-1} m^{n-1} + \ldots a_1 m + a_0 = 0. \]

The **Auxiliary Equation** determines the general solution.
If m is a real root of the auxiliary equation of multiplicity k then $e^{mx}, xe^{mx}, x^2 e^{mx}, \ldots , x^{k-1} e^{mx}$ are linearly independent solutions.
General Solution from the Auxiliary Equation

1. If \(m \) is a real root of the auxiliary equation of multiplicity \(k \) then
\[e^{mx}, xe^{mx}, x^2 e^{mx}, \ldots, x^{k-1} e^{mx} \]
are linearly independent solutions.

2. If \((\alpha + i\beta)\) and \((\alpha + i\beta)\) are a roots of the auxiliary equation of multiplicity \(k \) then
\[e^{\alpha x} \cos(\beta x), xe^{\alpha x} \cos(\beta x), \ldots, x^{k-1} e^{\alpha x} \cos(\beta x) \]
and
\[e^{\alpha x} \sin(\beta x), xe^{\alpha x} \sin(\beta x), \ldots, x^{k-1} e^{\alpha x} \sin(\beta x) \]
are linearly independent solutions.
Given a nonhomogeneous differential equation

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = g(x) \]

where \(a_n, a_{n-1}, \ldots, a_0 \) are constants.
The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = g(x) \]

where \(a_n, a_{n-1}, \ldots, a_0 \) are constants.

1. Step 1: Solve the associated homogeneous equation.
The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots a_1 y' + a_0 y = g(x) \]

where \(a_n, a_{n-1}, \ldots, a_0 \) are constants.

1. Step 1: Solve the associated homogeneous equation.
2. Step 2: Find a particular solution by analyzing \(g(x) \) and making an educated guess.
The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = g(x) \]

where \(a_n, a_{n-1}, \ldots, a_0 \) are constants.

1. **Step 1:** Solve the associated homogeneous equation.
2. **Step 2:** Find a particular solution by analyzing \(g(x) \) and making an educated guess.
3. **Step 3:** Add the homogeneous solution and the particular solution together to get the general solution.
Guessing Particular Solutions

\[g(x) \]

Guess

constant
Guessing Particular Solutions

g(x)
\text{constant}

\text{Guess}
A
Guessing Particular Solutions

\[g(x) \]

*constant\]

\[3x^2 - 2 \]

Guess

\[A \]
Guessing Particular Solutions

\[g(x) \]

\[constant \]

\[3x^2 - 2 \]

Guess

\[A \]

\[Ax^2 + Bx + C \]
Guessing Particular Solutions

\[g(x) \]

\begin{align*}
\text{constant} & : A \\
3x^2 - 2 & : Ax^2 + Bx + C \\
\text{Polynomial of degree } n & \\
\end{align*}
Guessing Particular Solutions

\[g(x) \quad \text{Guess} \]

- constant: \(A \)
- \(3x^2 - 2 \): \(Ax^2 + Bx + C \)
- \(\text{Polynomial of degree } n \): \(A_n x^n + A_{n-1} x^{n-1} + \ldots + A_0 \)
Guessing Particular Solutions

g(x)
constant
$3x^2 - 2$
Polynomial of degree n
$\cos(4x)$

Guess
A
$Ax^2 + Bx + C$
$A_n x^n + A_{n-1} x^{n-1} + \ldots + A_0$
Guessing Particular Solutions

\(g(x) \) \hspace{2cm} \text{Guess}

\begin{align*}
\text{constant} & \quad A \\
3x^2 - 2 & \quad Ax^2 + Bx + C \\
\text{Polynomial of degree } n & \quad A_n x^n + A_{n-1} x^{n-1} + \ldots + A_0 \\
\cos(4x) & \quad A \cos(4x) + B \sin(4x)
\end{align*}
Guessing Particular Solutions

\[g(x) \]
\[constant \]
\[3x^2 - 2 \]
\[Polynomial \ of \ degree \ n \]
\[\cos(4x) \]
\[A \cos(nx) + B \sin(nx) \]

Guess

\[A \]
\[A x^2 + B x + C \]
\[A_n x^n + A_{n-1} x^{n-1} + \ldots + A_0 \]
\[A \cos(4x) + B \sin(4x) \]
Guessing Particular Solutions

<table>
<thead>
<tr>
<th>$g(x)$</th>
<th>Guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>A</td>
</tr>
<tr>
<td>$3x^2 - 2$</td>
<td>$Ax^2 + Bx + C$</td>
</tr>
<tr>
<td>Polynomial of degree n</td>
<td>$A_n x^n + A_{n-1} x^{n-1} + \ldots + A_0$</td>
</tr>
<tr>
<td>$\cos(4x)$</td>
<td>$A\cos(4x) + B\sin(4x)$</td>
</tr>
<tr>
<td>$A\cos(nx) + B\sin(nx)$</td>
<td>$A\cos(nx) + B\sin(nx)$</td>
</tr>
</tbody>
</table>
Guessing Particular Solutions

<table>
<thead>
<tr>
<th>g(x)</th>
<th>Guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>A</td>
</tr>
<tr>
<td>$3x^2 - 2$</td>
<td>$Ax^2 + Bx + C$</td>
</tr>
<tr>
<td>Polynomial of degree n</td>
<td>$A_nx^n + A_{n-1}x^{n-1} + \ldots + A_0$</td>
</tr>
<tr>
<td>$\cos(4x)$</td>
<td>$A\cos(4x) + B\sin(4x)$</td>
</tr>
<tr>
<td>$A\cos(nx) + B\sin(nx)$</td>
<td>$A\cos(nx) + B\sin(nx)$</td>
</tr>
<tr>
<td>e^{4x}</td>
<td></td>
</tr>
<tr>
<td>$g(x)$</td>
<td>Guess</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>constant</td>
<td>A</td>
</tr>
<tr>
<td>$3x^2 - 2$</td>
<td>$Ax^2 + Bx + C$</td>
</tr>
<tr>
<td>Polynomial of degree n</td>
<td>$A_nx^n + A_{n-1}x^{n-1} + \ldots + A_0$</td>
</tr>
<tr>
<td>$\cos(4x)$</td>
<td>$A\cos(4x) + B\sin(4x)$</td>
</tr>
<tr>
<td>$A\cos(nx) + B\sin(nx)$</td>
<td>$A\cos(nx) + B\sin(nx)$</td>
</tr>
<tr>
<td>e^{4x}</td>
<td>Ae^{4x}</td>
</tr>
</tbody>
</table>
Guessing Particular Solutions

\(g(x) \)

\begin{align*}
\text{constant} & \quad A \\
3x^2 - 2 & \quad Ax^2 + Bx + C \\
\text{Polynomial of degree } n & \quad A_n x^n + A_{n-1} x^{n-1} + \ldots + A_0 \\
\cos(4x) & \quad A \cos(4x) + B \sin(4x) \\
A \cos(nx) + B \sin(nx) & \quad A \cos(nx) + B \sin(nx) \\
e^{4x} & \quad A e^{4x} \\
x^2 e^{5x} & \quad (A x^2 + B x + C) e^{5x} \\
e^{2x} \cos(4x) & \quad A e^{2x} \sin(4x) + B e^{2x} \cos(4x) \\
3x \sin(5x) & \quad (A x + B) \sin(5x) + (C x + D) \cos(5x) \\
x e^{2x} \cos(3x) & \quad (A x + B) e^{2x} \sin(3x) + (C x + D) e^{2x} \cos(3x)
\end{align*}
The form of y_p is a linear combination of all linearly independent functions that are generated by repeated differentiation of $g(x)$.
A Problem

Solve \(y'' - 5y' + 4y = 8e^x \) using undetermined coefficients.
The solution

When the natural guess for a particular solution duplicates a homogeneous solution, multiply the guess by x^n, where n is the smallest positive integer that eliminates the duplication.