Outline

1. Notes on Eigenvalues
2. Diagonalizability
Today’s Goals

1. Be able to diagonalize matrices.
2. Be able to use diagonalization to compute high powers of matrices.
Important Examples

1. A matrix may have no eigenvalues (We don’t count non-real eigenvalues)
2. A matrix may have multiple eigenvectors for a single eigenvalue.
3. A $n \times n$ matrix may not have n linearly independent eigenvectors.
Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagonalizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.
Diagonalizability

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagonalizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Example: Find an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

\[
A = \begin{pmatrix}
1 & 0 & 1 \\
0 & -1 & 3 \\
0 & 0 & 2
\end{pmatrix}
\]
Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.
Diagonalizability

Diagonalizability Theorems

Theorem

A \(n \times n \) matrix is diagonalizable if and only if it has \(n \) linearly independent eigenvectors.

Theorem

If an \(n \times n \) matrix has \(n \) distinct eigenvalues, then it is diagonalizable.

Note: Not all diagonalizable matrices have \(n \) distinct eigenvalues.
If a matrix is diagonalizable, there is a very fast way to compute its powers.
Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.
If A is diagonalizable, then

$$A^n = (PDP^{-1})^n = PD^nP^{-1}.$$
Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers. If A is diagonalizable, then

$$A^n = (PDP^{-1})^n = PD^nP^{-1}$$

Example: Given

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

compute A^8.