Outline

1. Review

2. Today's Goals
Review of Last Time

1. Found power series solutions to D.E.s at ordinary points.
Solving D.E.s Using Power Series

Given the differential equation \(y'' + P(x)y' + Q(x)y = 0 \), substitute
\[
y = \sum_{n=0}^{\infty} c_n(x - a)^n
\]
and solve for the \(c_n \) to find a power series solution centered at \(a \).
Given the differential equation \(y'' + P(x)y' + Q(x)y = 0 \), substitute

\[
y = \sum_{n=0}^{\infty} c_n (x - a)^n
\]

and solve for the \(c_n \) to find a power series solution centered at \(a \).

Solve the following D.E.

\[
y'' - 2xy' + y = 0
\]
Today's Goals

1. Find power series solutions to D.E.s at singular points.
Given a differential equation \(y'' + P(x)y' + Q(x)y = 0 \)

Definition

A point \(x_0 \) is an **ordinary point** if both \(P(x) \) and \(Q(x) \) are analytic at \(x_0 \). If a point is not ordinary it is a **singular point**.
Given a differential equation $y'' + P(x)y' + Q(x)y = 0$

Definition

A point x_0 is an **ordinary point** if both $P(x)$ and $Q(x)$ are analytic at x_0. If a point is not ordinary it is a **singular point**.

Definition

A point x_0 is a **regular singular point** if the functions $(x - x_0)P(x)$ and $(x - x_0)^2 Q(x)$ are both analytic at x_0. Otherwise x_0 is irregular.
Theorem

(Frobenius’ Theorem)

If \(x_0 \) is a regular singular point of \(y'' + P(x)y' + Q(x)y = 0 \), then there exists a solution of the form

\[
y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}
\]

where \(r \) is some constant to be determined and the power series converges on a non-empty open interval containing \(x_0 \).
Theorem

(Frobenius’ Theorem)

If \(x_0 \) is a regular singular point of \(y'' + P(x)y' + Q(x)y = 0 \), then there exists a solution of the form

\[
y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}
\]

where \(r \) is some constant to be determined and the power series converges on a non-empty open interval containing \(x_0 \).

To solve \(y'' + P(x)y' + Q(x)y = 0 \) at a regular singular point \(x_0 \), substitute

\[
y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}
\]

and solve for \(r \) and the \(c_n \) to find a series solution centered at \(x_0 \).