Let \(F = (e^z - 1, 2y\cos z, -y^2\sin z + 3 + xe^z) \) be a vector field in \(\mathbb{R}^3 \). Compute the line integral \(\int F \cdot dr \) along the curve \(r(t) = (\cos t, \sin t, t) \) from \(t = 0 \) to \(t = \frac{\pi}{2} \).

Solution: Since this integral looks like it will be an absolute nightmare, our first intuition is to check if the vector field is conservative (i.e. equal to \(\nabla f \) for some function \(f \)). If it were, then:

\[
(e^z - 1, 2y\cos z, -y^2\sin z + 3 + xe^z) = F = \nabla f = (f_x, f_y, f_z)
\]

In particular, setting equal the first coordinates and integrating to find \(f \):

\[
f = \int f_x \, dx = \int (e^z - 1) \, dx = xe^z - x + \alpha(y, z)
\]

Here \(\alpha(y, z) \) represents all of the terms in our function \(f \) that don’t have any \(x \)'s in them. They would all be wiped out when we take the partial derivative with respect to \(x \). Likewise for the other coordinates:

\[
f = \int f_y \, dy = \int 2y\cos z \, dy = y^2\cos z + \beta(x, z)
\]

\[
f = \int f_z \, dz = \int (-y^2\sin z + 3 + xe^z) \, dz = y^2\cos z + 3z + xe^z + \gamma(x, y)
\]

Where again the functions \(\beta \) and \(\gamma \) are terms that do not depends on \(y \) and \(z \), respectively. We see that if we let \(f = xe^z + y^2\cos z - x + 3z \) it will satisfy all three of the above partial derivatives. Our line integral starts at \(p = (1, 0, 0) \) and ends at \(p = (0, 1, \frac{\pi}{2}) \). Thus \(F = \nabla f \) and our line integral can be computed by just taking the difference of \(f(p) \) and \(f(q) \):

\[
\int F \cdot dr = \int \nabla f \cdot dr = f(x, y, z) \mid_{(1,0,0)}^{(0,1,\frac{\pi}{2})} = \frac{3\pi}{2}
\]