
Algorithmic Game Theory

3

Abstract

When computers began their emergence some 50 years ago, they were

merely standalone machines that could iterate basic computations a fixed

number of times. Humanity began to tailor problems so that computers

could compute answers, thus forming a language between the two. Al-

gorithms that computers could understand began to be made and left

computer scientists with the task of determining which algorithms were

better than others with respect to running time and complexity. Inde-

pendently, right around this time, game theory was beginning to take o↵

with applications, most notably in economics. Game theory studies inter-

actions between individuals, whether they are competing or cooperating.

Who knew that in almost 50 years time these two seemingly independent

entities would be forced together with the emergence of the Internet? The

Internet was not simply made by one person but rather was the result of

many people wanting to interact. Naturally, Game Theorists stepped in to

understand the growing market of the Internet. Additionally, Computer

Scientists wished to create new designs and algorithms with Internet ap-

plications. With this clash of disciplines, a hybrid subject was born, Algo-

rithmic Game Theory (AGT). This paper will showcase the fundamental

task of determining the complexity of finding Nash Equilibria, address

algorithms that attempt to model how humans would interact with an

uncertain environment and quantify ine�ciency in equilibria when com-

pared to some societal optimum.

4

Contents

1 Introduction 6

2 Computational Complexity of Nash Equilibria 7
2.1 Parity Argument . 8
2.2 The PPAD Complexity Class . 10

3 Learning Algorithms and Regret Minimization 10
3.1 Greedy Algorithms . 11
3.2 Learning Algorithms Applied to Game Theory 14

4 Quantifying Ine�ciency 15
4.1 Nonatomic Selfish Routing . 17
4.2 Atomic Selfish Routing . 21
4.3 Bounds on Price of Anarchy . 24

4.3.1 Nonatomic Bounds . 24
4.3.2 Atomic Bounds . 27

5 Conclusion 29

5

1 Introduction

The study of Algorithmic Game Theory (AGT) lies within two seemingly di↵er-
ent subjects: theoretical computer science and economics. The internet allowed
for a new global market and a myriad of small markets where everything could
be monitored, from clicks of a mouse to time spent on a webpage. Economists
want to find where profit can be optimized, where the computer scientist aims
to accomplish just that but would like to do it quickly. One important ques-
tion within economics is finding Nash Equilibria of certain games or situations.
Thinking of competing markets as a game with players, a Nash Equilibrium is
a point in a game where there is no incentive for a player to switch strategy
unilaterally when the other players stick to their own equilibrium strategy.

Definition 1 (Nash Equilibrium). A Nash Equilibrium (NE) is any vector of
n strategies p

⇤ = (p⇤1, p
⇤
2, ..., p

⇤
n
) where the payo↵ uj(p) for player j cannot be

any greater when changing a strategy from one side against the other player’s
equilibrium strategies.

uj(p
⇤) = max

pj

uj(p
⇤
1, ..., , p

⇤
j�1, pj , , p

⇤
j+1..., p

⇤
n
) (1)

John Nash won the Nobel Prize in Economics in 1994 for his proof that any two
person game with a finite number of pure strategies has at least one equilibrium
pair. If the NE could always be found, why not develop a program that finds
this point exactly and call it the solution of the game? The problem is that Nash
used the Brouwer Fixed Point Theorem from Topology to prove this statement
and it is known to be very di�cult to find the Brouwer Fixed Point. Despite
this di�cult task, computer scientists were up for the challenge to find NE.
If programs were able to find NE, it would mean that computers could model
human interaction and find the optimal point for all players in a given game.
Algorithms were made to find NE, like the Lemke-Howson (LH) Algorithm.
Unfortunately the LH Algorithm uses the Simplex Method which is known to
not run in polynomial time. To add to the di�culty, the LH algorithm only finds
one NE from the zero point (all strategies represented but all being zero), but
there may be several and one may give higher payo↵s to some players without
harming others.

It may be di�cult to find NE without any intuition into the game, but
players in a game typically converge rapidly to a NE. This begs the question,
can algorithms be developed that simply model a typical person’s natural game
play to quickly arrive at the NE? This question is addressed in the minimizing
regret and learning algorithms section.

However, letting players simply act selfishly may give rise to suboptimal
solutions. The price of anarchy section will deal with finding ways to quantify
what happens when players act selfishly versus when players are directed to
some societal good. Specifically, routing games will be analyzed as a way to
illuminate this subject by example.

6

In economics, Game Theory predicts an agent’s equilibrium behavior with
no regard to how that state is achieved. The way to arrive at NE is of prime
interest to Computer Science and Complexity Theory. What algorithms can be
made to model human behaviour? How hard is it to find NE? Is it really best to
allow people to act selfishly? This area of research has exploded with interest in
the past 10 years due mainly to the emergence of the Internet. This paper will
highlight some of the main topics in this new field with some results as well.

2 Computational Complexity of Nash Equilibria

“If your laptop cannot find it, neither can the market” (Kamal Jain [8]).

Discovering how to computationally find NE may seem beside the point,
since NE is a conceptual tool that describes how players in a game should ra-
tionally behave when put against competing rational players. So why try to
model this human interaction? Setting algorithms to locate NE will provide
sound credibility to predictions of individual’s behavior. Within the market of
the internet, if NE can be calculated e�ciently, marketers can easily see where
to focus attention and what prices to charge. Placing the rational behavior of
humans in an algorithm would give rise to marketers simply placing the right
parameters and variables in a program and seeing how players would react.

What would be the natural way for a rational player to play a game? Allow-
ing a player to repeatedly make an improving move would perhaps be the most
natural gambit [8]. In a mathematics formalism, let p = (pj , i 2 {1, · · · , n}) be
a vector of responses or strategies, with j denoting a specific player out of n
players and each pj coming from a set of possible strategies for player j denoted
Pj . Thus, the utility or payo↵ to player j with a specific strategy vector p is
uj(p). When a player changes strategy and everyone else stays the same, it will
be denoted as (p0

j
, p�j), where p0

j
2 Pj .

Definition 2 (Best Response [8]). A strategy p0
j
is a best response if

argmax
p2Pj

uj(p, p�j) = p0
j

For a pure NE, this would mean that one strategy is a best response. For a
mixed NE, there may be a set of strategies that are best responses. Any mixed
strategy that is a best response would then have all pure strategies that are
included in the mixed strategy as best responses.

The intent of this section is to demonstrate that finding a NE is a computa-
tional problem where one must find the pure strategies that make up the set of
best responses. If one can find the set of best responses, then the space where
NE can occur is reduced and a NE would lie in the best response strategies.
This task is known to be quite di�cult to implement, but how hard is it?

7

2.1 Parity Argument

Before the complexity of finding NE can be calculated, perhaps it may be illu-
minating to see how Nash proved existence to see if this problem can be solved
easily. Unfortunately, this e↵ort is futile because Nash used the Brouwer Fixed
Point Theorem and finding the Brouwer fixed point is known to be very di�cult
[7].

Because Nash’s theorem guarantees a NE to every game where each player
has a finite number of options to choose from, the problem of finding NE seems
to be di↵erent than other problems in complexity theory. Recall that a prob-
lem is in N P if a solution to the problem can be verified in polynomial time.
Further, a problem is in N P-Complete if every problem in N P can be re-
duced to it. Thus, problems in the N P-Complete class are the hardest form
of problems and if one problem in this class can be solved in polynomial time,
then the Millennium Prize Problem N P = P is solved, where P is the class
of problems that can be solved in polynomial time. Let the problem of NASH
be the computational problem of finding a NE in a given game. Assigning this
problem to N P would not be appropriate because it is not a decision problem
to begin with. Further, the question, does a NE exist, is trivial by Nash’s The-
orem.

Moving away from the existence quality of NE, NASH can be simplified into
several decision problems that can be shown to be N P-Complete [8]. Are there
two or more NE? Is the NE for a given player greater than a certain value? Does
a NE exist with a certain strategy in the set of best responses, etc.? Thus it
seems that in order to solve the main problem NASH, one must find a di↵erent
class of problems that NASH is a part of.

Introduce the class of problems –FP and FNP– in which an output can be
more than binary. These may be defined as the class of problems of finding a y
with a given x such that the binary function P (x, y) = 1 [4]. Let x be the input
of a game and P (x, y) be one if y is a NE and zero otherwise. Thus the problem
of NASH is to find y. Whether or not y is a NE can be checked in polynomial
time (linear in the number of strategies of a given player), thus NASH lies in
FNP . Further, a problem is in TFNP (for Total Function) if and only if the
problem is in FNP , and there is guaranteed to be at least one solution for it
[4]. This makes NASH 2 TFNP . It can also be shown that the problem of
finding the Brouwer fixed point of a given function also lies in TFNP [7]. It is
obvious that FP ✓ TFNP ✓ FNP (where FP is the function form of P) but
the relation cannot be reduced any more, as is the case with N P and P.

However, the class TFNP is typically used as a category of problems, be-
cause there is no known problem in which everything in TFNP can be reduced
to it. The complexity class that NASH falls into is an even more specialized
class called PPAD for Polynomial Parity Argument in a Directed Graph [4].
The parity argument states:

Any finite graph has an even number of odd degree nodes [7].

8

The parity argument can be demonstrated with the following problem in Graph
Theory. In preparation, let G = (V,E) be a given graph and |V | = n and s
be a path called the stick which is a sequence of edges s = e1, e2, . . . , em where
the endpoints of ei are the vertices vi and vi+1. Further denote d(v) to be
the degree of a vertex, and ⌘(v) to be the number of edges connecting v and
vi, i 2 {1, . . . ,m}, i.e. every vertex that is a part of the stick except the last
vertex.

Theorem 1 (Smith’s Theorem [12]). The number of Hamiltonian Paths in
a graph G = (V,E) beginning with stick s and ending in a vertex of the set
W = {w 2 V : d(w)� ⌘(w) is even} is even.

Proof. Let s = e1, e2, . . . , em be a stick in the graph G. Let h = e1, e2, . . . , en�1

be a Hamiltonian path that begins with the stick s. Introduce edge en which
is an edge connecting the last vertex of h and a vertex vk where k � m + 1.
Let L̃ = {e1, e2, . . . , en}, which is known as a lollipop of the graph. This set
of edges contains two Hamiltonian paths (h and h0) that begin with s; thus,
h = e1, e2, . . . , en�1 and h0 = e1, e2, . . . , ek�1, en, en�1, . . . , ek+1.

Figure 1: Two Hamiltonian paths beginning with the same stick s.

Construct the lollipop graph L̃(G, s) which maps each Hamiltonian path h
in G beginning with s to a vertex in L̃(G, s). An edge exists between h1 and h2

if and only if they di↵er by a single edge in the original graph. To calculate the
degree of a vertex h in L̃(G, s) consider the degree of the last node d(vn) in a
Hamiltonian path. The number of Hamiltonian paths that can be reached with
the same initial stick s is then d(vn) � ⌘(vn). Thus subtracting one from this
to eliminate the Hamiltonian path of h that makes the vertex in the lollipop
graph, the result becomes d(h) = d(vn)� ⌘(vn)� 1.

Each distinct Hamiltonian path is a new vertex in the lollipop graph. It
can then be seen that every di↵erent vertex in the lollipop graph is a di↵erent
lollipop of the original graph G. Thus in the set W in the hypothesis, this is
exactly the set of vertices in L̃(G, s) of odd degree. From the parity argument,
the number of vertices in L̃(G, s) of odd degree is even. It follows that the
number of Hamiltonian paths is even [12].

9

2.2 The PPAD Complexity Class

With Smith’s Theorem, a problem similar to NASH can be formed. Given a
graph with odd degree and a Hamiltonian path of the graph, find another Hamil-
tonian path. This problem is known as SMITH and is similar to NASH in that
it has a guaranteed solution. SMITH makes up a classic problem in the class
known as PPA for Polynomial Parity Argument [7]. PPA is defined in terms
of an algorithm which implicitly defines an exponentially large graph. At each
step of a given algorithm, it starts from a vertex and calculates what vertex it
has been to and what vertex it will travel to next in polynomial time. One does
not need to take into account the di↵erence between what vertices have already
been visited and the vertex that will be visited in the next step. The desired
solution is a graph that is symmetric, i.e. lacks direction, in the PPA case.

Remembering the Lemke-Howson (LH) Algorithm, a NE was found along a
directed graph where the algorithm would calculate the next vertex in polyno-
mial time and would finish when LH arrived at a vertex that had no successor.
Consider the following statement which follows from the parity argument:

In any directed graph where each vertex has at most one edge leaving and one
edge entering, if there is a source then there must be a sink [4].

Before a formal definition of PPAD is attempted another problem must be
defined. Given successor circuit S and predecessor circuit P each with the same
number of input bits and output bits, say n, a directed graph can be constructed
on the set of length n vectors, i.e. 2n possible inputs. An edge exists from vertex
x to y if and only if S(x) = y and P (y) = x. Let the predecessor of the all
zero vector be itself and the successor of it be something di↵erent, so that the
algorithm moves away from zero. Consider the problem END-OF-LINE: find
an input x such that P (S(x)) 6= x or S(P (x)) 6= x 6= all zero vector [4].

Definition 3 (PPAD [4]). PPAD is the class of all search problems that can
be polynomial-time reduced to END-OF-LINE.

Thus all problems in PPAD involve finding the source or sink vertex of
an exponentially large directed graph. It can be shown [8] that NASH can be
reduced to END-OF-LINE and then END-OF-LINE reduces to it, so NASH is
in PPAD-complete.

3 Learning Algorithms and Regret Minimiza-
tion

Game theorists typically consider problems of making decisions repeatedly in
an uncertain environment with uncontrollable or unforeseeable events. Because
a player is allowed to continually play the game, one would want to learn from
his/her past experiences and update information for how to play the game next
time. This brings the idea of learning algorithms to the forefront, where players

10

learn from past events. This can then be placed in situations where many play-
ers compete and every player learns from past repetitions of game play. This
may be the most natural way a rational person would play a game, and thus
algorithms that can model this is of prime interest to the Algorithmic Game
Theorist.

These algorithms can also be thought of as making repeated moves that
aim to minimize regret [2]. An algorithm produces a regret when the di↵erence
between an algorithm’s loss and the optimal decision’s loss is positive. Regret
analysis seeks to minimize this regret incurred by the algorithm [2]. Previous
approaches for making adaptive algorithms are not suited for an environment
in which malicious interactions are permissible. Learning algorithms have been
known to exist in optimization theory, but they make the simplifying assump-
tion that the feedback received is truthful and the environment is not updating
with each implementation [2]. Introducing players and competition eliminates
these simplifications and begs for a new area of research.

However, an introduction to preexisting algorithms would clarify the algo-
rithms with game theoretical applications. Consider an algorithm H that up-
dates at each time step t. From the list of m available actions X = {1, . . . ,m},
the algorithm chooses a probability distribution p

t = (pt
i
, i 2 X) of the m ac-

tions at each t. Here, the full information model will be analyzed where the
player knows the expected loss lt

i
at each time from the action he/she used

[3]. These loss values can be thought of as percentages, or values restricted
to [0, 1]. Thus, the expected loss at time step t from using algorithm H is
lt
H

=
P

m

i=1 p
t

i
lt
i
. The loss of using the ith action during the first T time steps is

given as LT

i
=
P

T

t=1 l
t

i
and the total loss of using algorithm H for the first T

time steps is LT

H
=
P

T

t=1 l
t

H
[3].

When dealing with external regret, the algorithm designer compares the per-
formance of the given algorithm with that of the best single action in hindsight.
Let G be a class of algorithms, such that H is a part of it. The desired algorithm
would minimize the regret of using any algorithm in G . Let the regret of an al-
gorithm H be RG = LT

H
�ming2G LT

g
. A popular choice for a class of algorithms

is the set of using a single action, i.e. G = X. Thus, with LT

min = mini2X LT

i
,

the regret can be written as RT = LT

H
� LT

min [3].

3.1 Greedy Algorithms

To simplify things a bit, let the losses be restricted to the values zero or one and
not any real number between. In order to understand the goal of this section,
it will be interesting to see how a naive first attempt at these algorithms may
turn out. The GREEDY alogorithm selects the action that has lowest total loss
at the previous time step, i.e. the action xt = argmin

i2X
Lt�1
i

[3]. To break
ties, let the action with lowest index be chosen if many actions have the same
minimum loss [3].

11

GREEDY Algorithm:
Initiate: x1 = 1
Increment: Lt

min = mini2X Lt�1
i

To prevent ties let M t�1 = {i : Lt�1
i

= Lt�1
min}

xt = minM t�1

Example 1 (Greedy). To see what the worst case is for this algorithm, consider
the following example: Let X = {1, 2, 3, 4, 5} and let each time step loss for each
action be given as:

0

BBBBBB@

x = 1 2 3 4 5

t = 1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 1 0 0 0 0

1

CCCCCCA

The GREEDY Algorithm begins at x = 1 and then incurs a loss of one and then
moves to x = 2 because this is the lowest indexed value that has the minimal
loss of zero at that stage. Continuing in this manner, GREEDY incurs a loss of
six in six time steps. Restricting to the comparison class to be that which sticks
with a single action at every iteration, the optimal loss would be one and can
be achieved by using any x = 2, 3, 4, or 5 at every iteration in this example.

A pattern can be seen in this simple example that gives an upper bound for the
the resulting loss when using the GREEDY algorithm. At each time step, the worst
GREEDY can do is gain a loss of one and a single strategy would not increase,
or has loss of zero at the time step. The set M t then decreases by at least
one because the action chosen has increased from the minimum loss value. The
algorithm can continue to gain a loss of one without the optimal loss increasing
m times (the number of actions the player has available to him/her). As soon
as the last action increases, the optimal loss increases. If the above example
continues in the similar fashion at time step nine, action x = 5 will have not
increased but the loss taken by GREEDY will have increased to nine. Beginning
with a loss of zero, each action except one can then be used before the loss of
the optimal single action increases by one. Thus, the following theorem can be
stated.

Theorem 2. The loss of the GREEDY algorithm for a model with m actions after
T time iterations is bounded above by

LT

GREEDY  m · LT

min + (m� 1) = O(m)[3].

The order m loss mainly comes from the naive way the algorithm selects
the next action by concentrating on a single action at each time step. Instead
of choosing the action that has minimal loss with the lowest index, introduce a
uniform distribution over all actions of minimal loss. This modification produces

12

a significant improvement to the GREEDY Algorithm. This algorithm will be
termed RANDOMIZED GREEDY Algorithm [3].

RANDOMIZED GREEDY (RG) Algorithm
Initialize: p1

i
= 1/m for i 2 X

Increment: Similar to GREEDY, use Lt�1
min and M t�1 as defined above

Let pt
i
= 1/|M t�1

| for i 2 M t�1 and pt
i
= 0 otherwise.

In order to place a similar worst case bound on this algorithm, one must analyze
the size of M t at each time step because this e↵ects the probability distribution
that is used to choose the actions.

Theorem 3. The loss for the RG algorithm after T time steps for a model with
m actions is bounded above by

LT

RG  logm+ (1 + logm)LT

min = O(logm)[3].

Proof. Consider the time steps between when LT

min goes from c to c+ 1. Let t
and t + 1 be in this range. The size of M t can decrease by an amount k in a
single time step, say t to t+1. Let the |M t

| = µ. Looking at the loss attributed
to RG at t,

Lt

RG =
mX

i=1

pt
i
lt
i
=

1

µ

X

i2Mt

lt
i
=

k

µ

The last equality follows from the k actions increasing from the minimum loss,
thus leaving M t. This last term can be bounded by letting the set M t decrease
by one at k time increments

k

µ


1

µ
+

1

µ� 1
+ · · ·+

1

µ� k + 1
.

Now, how large can k be before the loss of the minimum increases? Worst case,
k can be µ and µ can be as large as m (the number of actions available). Hence,
within the time it takes for the minimum loss to increase by one, the increased
loss of RG can be written as a truncated summation of logm

1

m
+

1

m� 1
+ · · ·+

1

1
 logm+ 1.

However, this is a bound on the loss of RG in a unit increase of the minimal
loss. Thus, over the entire time the RG algorithm will increase at worst by logm
before the minimal loss increases by one, but this can happen each time the
minimal increases. Thus, the desired inequality is formed [3].

Note that this simple modification to the GREEDY algorithm has made a
significant performance improvement.

13

3.2 Learning Algorithms Applied to Game Theory

The problem becomes, how do these regret minimizing algorithms interact with
similar algorithms? To model games, consider a set of n competitors and player
j has a set Sj of m actions for j 2 {1, . . . , n}. Consider a function that takes
into account the action of each player and maps this set of actions to a single
value in [0, 1]. More precisely, the loss function for player j is defined as fj :
Sj ⇥ S�j ! [0, 1] where S�j is the cartesian product of every player’s action
other than j [3]. At time t consider the vector of actions for each player s

t =
(st

j
, for st

j
2 Sj , j 2 {1, . . . , n}). Thus, fj(st) 2 [0, 1].

The model must allow each player to randomize his/her actions according
to a probability distribution. Let pt

ji
be the probability player j uses action i at

time t [3]. Thus, player j chooses an action st
j
2 Sj according to the distribution

p
t

j
= (pt

ji
, i 2 1, . . . ,m) [3].

Without loss of generality, keep everything relative to player j. The loss to
player j at t by using the algorithm H is lt

H
= E(f t

j
(st)) =

P
s2Sj

fj(s, st�j
)pt

j,s

where each action is distributed over the probability distribution p
t

j
[3]. Let lt

k
be

the loss of using action k where st
k
2 Sj (could be the same as the one picked by

H). Write the loss to player j for using action k at time t as lt
k
= E(f t

j
(st

k
, st�j

))

where the jth player switched action to st
k
[3]. The total loss incurred by player

j after T time increments while using algorithm H is given as LT

H
=
P

T

t=1 l
t

H

and for an arbitrary action k, LT

k
=
P

T

t=1 l
t

k
[3]. It is now possible to define

regret to player j in the game theoretical framework, RH = LT

H
�mink2Sj L

T

k

[3].
The game theory model, which takes into account many players competing

and updating strategies, can then be placed into the framework of learning
algorithms. The full information model was used in the previous scenario not
dealing with game theory, but this is not the way it should be modeled here.
A player typically only knows the actions that they have done up to a certain
time, not the losses that would have been incurred if di↵erent actions were taken.
This rules out the GREEDY algorithm from before, but there are other algorithms
that are applicably to the partial information model. These algorithms attempt
to model competing individuals, each trying to minimize regret against other
players. Many sources on this subject look at the Mulit-Armed-Bandit problem
that considers someone pulling many levers such that each gives a reward and
the user would like to use the one that gives the highest reward [1]. This problem
can then be adjusted to allow the levers to act adversarially against the user to
place this problem in the realm of game theory [1]. Furthermore, this problem
can be placed in the context of routing where each route a player can take across
a network has costs and the user wants to minimize the cost to travel across it.
It is these problems that will be addressed in detail in the next section.

14

4 Quantifying Ine�ciency

However, if everyone is allowed to only think about themselves, what happens to
the global good? What can go wrong when everyone is allowed to act selfishly?
Might individuals do better personally if the global good is taken into account?

Example 2 (Prisoner’s Dilemma). Consider the prisoner’s dilemma, which can
be represented in the following matrix form:

✓Confess Don’t

Confess (1, 1) (10, 0)
Don’t (0, 10) (5, 5)

◆

It is easy to see by inspection that the NE to this game is (confess, confess)
which gives a payo↵ of 1 to each player. However, this is pareto ine�cient
because both players can do better by coordinating and both not confessing.
This would increase the payo↵s to both players, but it is not a NE. It is thus
concluded that the NE for the prisoner’s dilemma is ine�cient [11].

The problem of ine�ciency is not the same as finding a NE. Rather, this
is more of an optimization problem that has an objective function which natu-
rally describes the quantity that is being maximized, i.e. the payo↵. When the
optimal and NE values are similar, selfish behavior does not have severe con-
sequences and having an overseer directing the game would not give significant
benefit to anyone. This brings up the question, when are NE guaranteed to
optimize these optimization problems?

A natural choice in measuring the ine�ciency of equilibria would be the ratio
between the objective function value and the equilibrium. However, this brings
up several problems, including the optimal value is typically di�cult to com-
pute and there may be several equilibria. Among the most popular measures of
ine�ciency is the price of anarchy (POA).

Definition 4 (Price of Anarchy [11]). Let uworst be the worst equilibrium value
and let û be the optimal outcome.

POA =
Worst equilibrium value of the game

Optimal outcome
=

uworst

û
(2)

What if a game has many equilibria that are close to the optimal outcome
and only one that is much higher? To di↵erentiate between those that have
many equilibria far from the optimum and those that have many equilibria
close to it, the measure of price of stability (POS) will be introduced.

Definition 5 (Price Of Stability [11]). Let ui be the ith equilibrium value of
the game with L equilibria.

POS =
1

L

LX

i=1

ui

û
(3)

15

Note that when there is a unique equilibria, POS = POA. In some circum-
stances, it may be better to quantify ine�ciency with POA, where POS would
be better to use in others. Routing games will be used to demonstrate these
quantities.

Example 3 (Pigou’s Example [11]). Consider the Pigou’s Example where there
is a source and destination node, s and d, respectively, and there are two links
1 and 2 that connect s and d. Denote the flow across each link to be yi, i = 1, 2.
The cost of using link 1 is constant, say c1(y1) = 1, and the cost of using link 2
is linear, say c2(y2) = y2.

Figure 2: Pigou’s Example

Suppose the problem is to push one unit of flow through this simple network
with minimal cost. It is easy to see that an equilibrium to this network would
be for everyone to take link 2, since if one deviates to the constant route, he/she
does not improve the cost of 1. However, the cost on the link he/she previously
occupied has decreased. Thus, the deviator would have incentive to move back
to link 2.

The natural objective function can be written in the following optimization
problem

min
y1,y2

2X

i=1

yici(yi) = y1 + y22

subject to y1, y2 > 0,
2X

i=1

yi = 1.

It can easily be seen that the objective function is strictly convex and the feasible
region is convex, so that Lagrangian methods can be used to find the optimal.

L (y,�) = y1 + y22 � �(y1 + y2 � 1)

@L
@y1

= 1� �̂ = 0) �̂ = 1

@L
@y2

= 2y2 � �̂ = 0) �̂ = 2y2

16

To satisfy both the equations for �̂, it forces y2 = 1
2 . Further, to have a feasible

solution, y1 must also be 1
2 . Hence, the optimal average flow is 3

4 . It turns out,
as will be shown in the next section, that both the POS and POA = 1

3/4 = 4
3 .

4.1 Nonatomic Selfish Routing

Although the Pigou’s example seems very simple, it allows one to see more
general features of routing problems. To understand that the POS and POA are
the same (i.e. the average cost for the tra�c is the same in every equilibrium) in
the previous example, nonatomic selfish routing will be introduced. The term
nonatomic is used because there is a large number of players in the network
and each player’s contribution is small compared to the whole system [10]. To
generalize the Pigou’s example, consider the following notation.

To begin, a network is defined on a graph with vertices and edges G = (V,E)
where |E|= m. This graph has several source-destination pairs, where in the
simple example there was only one pair. Label the set of source-destination
pairs as S = {(s1, d1), (s2, d2), · · · , (sn, dn)}. For simplicity let (sj , dj) = j for
j = 1, · · · , n. Each player in the network is concerned with one of these source-
destination pairs which can also be termed as commodities. Suppose that the
set of all routes for commodity j 2 S is Rj and the set of every route for every
commodity is R = [

n

j=1Rj .
As in the previous example, a cost function c = (ci, i 2 E) must be assigned

to each edge. These will most likely depend on the flow across an edge. For
mathematical simplicity assume c is nonegative, continuously di↵erentiable, and
nondecreasing with respect to a flow across the edge. Denote the flow along route
r as xr with x = (xr, r 2 R). In order to see how much cost is incurred by using
a particular route, the amount of flow that is being used on each edge must be
considered. Introduce the edge-route incidence matrix Ai,r for i 2 E and r 2 R
where Ai,r = 1 if i is in the route r and zero otherwise [6]. Further, denote the
total flow on each edge as y = (yi, i = 1, . . . ,m). Summarizing this in matrix
notation yields

Ax = y. (4)

The cost attributed to moving a commodity along a route r 2 R is

cr(xr) =
mX

i=1

ci(yi)Ai,r, for r 2 R (5)

where the relationship between xr and yi is given in (4). Typically, the network
will be known and commodities will be allowed to take certain routes, thus
the commodity-route incidence matrix H can be constructed with entries Hj,r

being one when commodity j can use route r and zero otherwise [6]. Let the
flows for each commodity be f = (fj , j = 1, . . . , n. Summarizing this in matrix
form gives

Hx = f . (6)

An instance of a nonatomic selfish routing game is of the form (G,f , c)
[10]. Thus to describe a nonatomic selfish routing game the following is needed:

17

the graph so that H and A can be constructed, the flows needed between
every source destination pair and the cost function along every edge. With this
information, the problem of finding the optimal flow for each commodity can
be calculated.

Definition 6 (Wardrop Equilibrium [6, 10]). Let x be the feasible flow for a
nonatomic instance (G,f , c). The flow x is a Wardrop equilibrium flow if for
every commodity j 2 S and every route that has j as a commodity, say r 2 Rj ,
then for xr > 0

cr(xr) = inf
r02Rj

cr0(xr), 8r 2 Rj .

Thus, the flows are at equilibrium if the network cannot do any better by
using a di↵erent route that connects the same source destination pair.

It can be shown that every nonatomic game has an equilibrium flow and
every equilibrium flow gives the same cost along every edge. In order to prove
this, the objective function method must be explained. Consider the societal
cost function zci(z). This function describes the cost that society must bear
when z people use an edge that costs ci(z) for each person to use. Assuming
ci(z) is convex and continuously di↵erentiable, it is known that multiplying by z
does not change these conditions. Denote c⇤

i
(z) = d

dz
(z ⇥ ci(z)) as the marginal

cost function [10]. Let x be a feasible flow for the instance.

c⇤
r
(xr) =

X

i2r

c⇤
i
(yi) =

X

i2r

ci(yi) +
X

i2r

yi
d

dyi
(ci(yi))

= cr(xr) +
X

i2r

yi
d

dyi
(ci(yi))

It can be seen from the convexity of c that x̂ is an optimal flow for the instance
if and only if for every commodity j 2 {1, . . . , n} and every pair of routes with
the same source destination pair r, r0 2 Rj ,

c⇤
r
(x̂r)  c⇤

r0(x̂r)

With the instance (G,f , c) and the optimal function yici(yi) that is convex and
continuously di↵erentiable, x̂ is an optimal flow for the instance if and only if
it is an equilibrium flow for (G,f , c⇤), where c

⇤ is the vector of marginal cost
functions for each edge [10].

Noticing this, simply invert the previous result so that an equilibrium flow
can be found for an optimal function whose derivative is the cost function ci(yi)
that is desired. Choose for the optimal function

R
yi

0 ci(u)du [10]. This implies
that a flow x̂ is an optimal flow for the new objective function if and only if
it is an equilibrium flow for (G,f , c). For this optimal function, it need only
be required that ci is nondecreasing and continuously di↵erentiable since this
makes d

dz
ci(z) � 0 which forces

R
z

0 ci(u)du to be convex. Thus, minimizing a
convex function over a convex set means that the optimal flow x̂ of this objective
function is an equilibrium flow for the instance (G,f , c) which is the original

18

instance of the nonatomic selfish routing game. Knowing the desired objective
function form, simply sum over every edge to get the network objective function

�(x) =
mX

i=1

Z
yi

0
ci(u)du (7)

Hence, a feasible flow for the instance (G,f , c) is an equilibrium flow if and
only if it is at an absolute minimum of the objective function given in (7).

Theorem 4. Let (G,f , c) be a nonatomic instance, then there is at least one
equilibrium flow x. Further, if there is more than one equilibrium flow for the
instance then the cost on every edge is the same for every equilibrium flow [10].

Proof. The proof technique here will follow from the objective function method
outlined above where the equilibrium is made to be the optimal value of some
objective function. It is known that the set of feasible flows of (G,f , c) make up
a compact subset of a |R| - dimensional Euclidean space where R is the set of all
possible routes in the network. Further, the cost function is continuous, which
makes the objective function in (7) a continuous function over this feasible set.
Hence, � is convex and achieves a minimum value on this feasible set and every
minimum corresponds to an equilibrium flow of (G,f , c), as shown above.

Consider two di↵erent equilibria flows, say x and x
0 for the same instance.

Therefore these two equilibria flows minimize �. Consider convex combinations
of our equilibria flows with � 2 [0, 1].

�T
x+ (1� �T)x0 (8)

With a convex feasible set, these vectors are also feasible flows. Knowing � is
convex, the following inequality can be made:

�(�T
x+ (1� �

T)x0)  ��(x) + (1� �)�(x0). (9)

Because x and x
0 are global minima of �, the inequality in (9) must hold

with equality for every convex combination. Therefore, the result is a linear
combination of optimal functions which means

R
yi

0 ci(u)du is linear between the
two equilibria values, which makes every cost function constant between any
two equilibria [10].

This shows that POS and POA are the same in nonatomic selfish routing
games. In order to prove that equilibrium flows exist and give unique costs
along edges for (G,f , c), a very unnatural choice of objective function given in
(7) had to be introduced. This brings up questions such as, what is the natural
choice of objective function, and how are the natural objective function and the
objective function that gives equilibria di↵erent?

Example 4 (Braess’s Paradox [6]). Consider a four node network with two
disjoint routes from s to d given in Figure 3. Suppose there are six units of
tra�c that need to move across the network. The flow from s to d is f = (6),

19

Figure 3: Braess’s Paradox with (a) the original network and cost functions and
(b) the adjusted network with an added edge and cost.

the commodity-route incidence matrix is H = (1, 1), the edge cost vector is
c
T = (y1 + 50, 10y2, 10y3, y4 + 50), and the edge-route incidence matrix A is:

A =

0

BB@

1 ! 2 3 ! 4

1 1 0
2 1 0
3 0 1
4 0 1

1

CCA

In the equilibrium flow, the tra�c is split evenly between the two routes, so
that there is no incentive to switch routes and both routes have the same cost
of 83. Adding an edge of small cost to the network does something surprising.
Denote the routes r1 = route using edges 1 ! 2, r2 = 3 ! 4, and r3 =
3 ! 5 ! 2. After a little thought, it can be seen that the equilibrium flow
x = (xr1 = 2, xr2 = 2, xr3 = 2). Note that if anyone deviates, the tra�c flow
decreases along the original route and so the person who changed would revert
back. However, now the total cost is 92 and the same for any route.

Paradoxically, simply adding a road with small cost makes everyone’s travel
time greater. The optimal flow is the equilibrium flow of the original network,
which gives POA = 92/83 = 1.1084. What goes wrong here? What else needs
to be taken into account? Begin by looking at the natural choice of objective
function (as used in the Pigou’s Example)

C(x) =
mX

i=1

yici(yi). (10)

This leads to the following optimization problem:

20

min C(x)

subject to xr � 0 for r 2 R,y 2 Rm

Ax = y,Hx = f

With the objective function guaranteed to be convex and the feasible region
being convex, Lagrangian techniques can be used to find the optimal.

L (x,y;�,µ) =
mX

i=1

yici(yi) + �
T (f �Hx)� µ

T (y �Ax) (11)

where � is n-dimensional (same as the number of commodities), and µ is m-
dimensional (same as the number of edges). Further let j be the commodity
that uses route r.

@L
@xr

= ��j +
mX

i=1

µiAi,r

@L

@yi
= ci(yi) + yi

d

dyi
ci(yi)� µi

Maximizing over all real values for y, no boundary is encountered and a mini-
mum can be found.

µ̂i = ci(yi) + yi
d

dyi
ci(yi) (12)

However, being limited to positive xr, either the derivative is zero away from
xr being zero or it is increasing or zero on the boundary.

�̂rj

⇢
=

P
m

i=1 µ̂iAi,r : xr > 0


P
m

i=1 µ̂iAi,r : xr = 0
(13)

This is almost the desired values for the optimal but there is an extra yi
d

dyi
ci(yi)

term in (12). This term can be interpreted as the congestion toll that the users
on edge or link i have to pay [6]. Therefore the total cost, which is the delay
along the road and the toll paid to use the road, is being minimized. This
toll charge introduces an overseer to the game such that if he/she is allowed to
intervene by imposing tolls, people will take the optimal routes of minimal total
cost.

4.2 Atomic Selfish Routing

The distinction between atomic and nonatomic instances is that in the former,
each commodity represents a single player who needs to send a large amount of
tra�c on a single route, whereas the latter models each person’s contribution
as being insignificant to the whole [10]. With this modification, it will be shown
that Theorem 4 does not hold in its entirety. The instance is of the same form in
both atomic and nonatomic versions, (G,f , c). Atomic instances can be thought
of as finite simultaneous-move games where each player is a commodity since

21

the flow of each commodity is routed through a single route.
Here would be a good place to recall all the notation that was introduced last

section. Recall that i 2 E the set of edges of the network, so i 2 {1, . . . ,m}.
Also, j 2 S the set of commodities, source-destination pairs, or sometimes
referred to as players j 2 {1, . . . , n}. Further, there are the sets R which is the
set of all routes that connect any source-destination pair and Rj which is the
set of routes that player j can take. A particular route in R will be denoted
as r and can be made more specific to be in Rj . Also, consider the edge-route
incidence matrix A and the commodity-route incidence matrix H.

y = (yi, i = 1, . . . ,m), the vector of flows through each edge

x = (xr, r 2 R), the vector of flows through every route

c = (ci, i = 1, . . . ,m), the vector of edge cost functions

C(x) =
mX

i=1

yici(yi), total cost, i.e. what to minimize to find optimal flow

cr(xr) =
mX

i=1

ci(yi)Ai,r, cost incurred for using a route r 2 R

�(x) =
mX

i=1

Z
yi

0
ci(u)du, the optimal function that gives equilibrium flows.

Definition 7 (Atomic Equilibrium flow [10]). Let x be a feasible flow. The flow
x is an equilibrium flow if every player j 2 {1, . . . , n} and every pair r, r0 2 Rj

of routes for player j with xr > 0

cr(xr)  cr0(x
0
r0)

where x and x
0 are identical except x0

r
= 0 and x0

r0 = fj . Thus, simply move
all of the flow from one route to another that connects with the same source-
destination pair as commodity j’s.

Example 5 (AAE Example [10]). By demonstrating with an example, it can
be shown that an atomic instance gives equilibria that do not have the same
link costs, which makes the POS and POA not the same. Consider a network
where players are trying to move a unit of commodities j 2 {1, 2, 3, 4} from
their source sj to their destination dj , with costs given in Figure 4. There are
two possible routes for each player, the direct route or the two edge route. This
leads to two equilibria: the first where all tra�c uses the direct route and the
other where everyone takes the two edge route. Note that everyone must send
all their tra�c along one route in the atomic case. The first equilibrium incurs
a total cost of 4. This is also the optimal value. The second equilibrium gives
a cost of 3 to player 1 because player 3 shares one of his/her edges with linear
cost. Similarly for 2 because 4 shares one of the max cost edges. Now players
2 and 4 each use an edge of zero weight, but have the shared edge with players
1 and 3, respectively. Thus the total cost in this equilibrium is 10. This gives a
POA of 10/4 = 2.5, which is much higher than in the nonatomic example.

22

Figure 4: AAE example to demonstrate that di↵erent equilibrium flows have
di↵erent costs.

With this simple example, two major di↵erences were demonstrated between
atomic and nonatomic routing. The first being that di↵erent equilibria give
di↵erent costs, and the second being the POA can be huge in these games
compared with their nonatomic counterparts. However, can equilibrium flows
be shown to at least exist in the atomic instances? For this study, the simplifying
assumption will be made that assumes all flows for every commodity is the same,
i.e. fj = 1, 8j 2 {1, . . . , n}.

Theorem 5. Let (G,f , c) be an atomic instance where the flow for each com-
modity is directed along a single route, xr = 1, 8r 2 Rj , 8j 2 {1, . . . , n}. Then
an equilibrium flow x exists [10].

Proof. Because atomic instances have a finite number of commodities and each
has a finite number of strategies (sending whole tra�c amounts down a single
route) the optimal function in (7) must be discretized.

�̃(x) =
mX

i=1

yiX

u=0

ci(u) (14)

Let x be a global minimum for �̃(x). Assume x is not an equilibrium flow for
the instance (G,f , c), so player j can decrease its cost by taking route r0 instead
of r for r, r0 2 Rj with new net flow x

0. For all edges in route r0 that were in r
(denoted by r \ r0) the flow does not change, so the cost does not change along
these edges. However, the flow changes along the edges that were not common,
say i 2 r\r0 and i 2 r0\r and thus the cost changes. In the objective function
(14), adding a flow to the edges i 2 r0\r yields the extra term ci(yi + 1) with

23

an extra unit of flow, and for edges i 2 r\r0 the term ci(yi) is lost.

0 > cr0(xr0)� cr(xr) =
X

i2r0\r

ci(yi + 1)�
X

i2r\r0
ci(yi) = �̃(x

0)� �̃(x)

The last term has a contradiction because x was the minimum flow of the
objective function. Thus, the equilibrium flow is the flow that minimizes the
objective function given in (14).

In order to prove this for di↵ering flows for each player, the objective function
needs to change, but the same proof technique is used. Despite the proof that
equilibrium flows exist, the equilibrium flows do not give the same costs thus
leading to POS 6= POA, as was seen by example.

4.3 Bounds on Price of Anarchy

The POA gives a measure of how far o↵ the cost is between individuals acting
selfishly in a network game and having an overseer directing tra�c to get optimal
flow. It would be of particular interest to know how far NE can be from the
optimal. Again, the nonatomic and atomic cases will be treated seperately.

4.3.1 Nonatomic Bounds

Example 6 (Nonlinear Pigou [10]). Consider a variant to the Pigou example
in Figure 5 where cost on the second edge is not linear but c2(y) = yq for large
q.

Figure 5: Pigou’s Example with nonlinear cost function

The unique equilibria pushes the unit flow of tra�c along the second edge,
so that a unit total cost is incurred. However, the cost can be made smaller by
sending a small fraction, say ✏, on the constant cost edge and the rest on the
nonlinear cost edge. This makes total cost

P2
i=1 yici(yi) = ✏(1)+(1�✏)(1�✏)q =

✏+(1� ✏)q+1. As q gets large and ✏ gets small, the cost can be made arbitrarily
close to zero, which makes the POA grow without bound.

This example begs the question, can the POA be bounded in some cases
and how big can it get? The relation between the objective function given in
(7), which gives the equilibrium flows, and the true quantity that needs to be
optimized (10), gives a particular bound on POA.

24

Theorem 6. Let (G,f , c) be a nonatomic instance and suppose

yici(yi)  � ·

Z
yi

0
ci(u)du, 8i 2 E and yi � 0.

Then the POA of the instance is no more than � [10].

Proof. Allow x to be an equilibrium flow and let x̂ be the optimal flow for the
instance (G,f , c). Take the hypothesis of the theorem and sum over all edges
in the network.

C(x)  � · �(x)  � · �(x̂)  � · C(x̂)

The second inequality holds because the equilibrium flow x minimizes the ob-
jective function � and the last inequality holds because with any nondecreasing
function, the following inequality can be made [10]

Z
yi

0
ci(u)du  yici(yi).

This gives the upper bound to POA

� �
C(x)

C(x⇤)
= POA. (15)

Consider having polynomial cost functions where none of them have greater
order than q. Note that yci(y) increases the order of the polynomial by one and
so does

R
y

0 ci(u)du with a constant di↵erence, q+1. Hence the POA can be no
bigger than q + 1 [10].

Theorem 7. Let x be a feasible flow for the nonatomic instance (G,f , c). The
flow x is an equilibrium flow if and only if for any other arbitrary feasible flow
x
0 for the instance, the following holds [10]

mX

i=1

ci(yi)yi 
mX

i=1

ci(yi)y
0
i

where Ax = y and Ax
0 = y

0

Proof. Let there be commodities j = 1, . . . , n and edges i = 1, . . . ,m. Define
a new function that is the same as the right hand side of the inequality in the
theorem

Bx(x
0) =

mX

i=1

ci(yi)y
0
i
.

Note, that the definition for Bx can be written as another sum.

nX

j=1

X

r:r2Rj

cr(xr)x
0
r
=
X

r2R

cr(xr)x
0
r
=

mX

i=1

X

r2R:i2r

ci(yi)x
0
r
, by switching the sum

25

=
mX

i=1

ci(yi)
X

r2R

Ai,rx
0
r
=

mX

i=1

ci(yi)y
0
i
= Bx(x

0)

Because the equilibrium flow for a nonatomic instance has equal cost on every
edge, the intuitive interpretation of Bx(x0) is the cost of the flow x

0 after the
costs along every edge has been changed to be constant [10]. By the first defini-
tion of Bx, the theorem can be restated as x is an equilibrium flow if and only
if it minimizes Bx over all feasible flows.

Now, turn to the second definition of Bx. In order to find the flow x
0 that

minimizes Bx, take the derivative.

@Bx(x0)

@x0
r

= cr(xr), 8r 2 Rj

Thus, it is clear to see that for any feasible flow x
0 > 0, cr(xr) needs to be as

close to zero as possible, i.e. only the flows that minimize cr(xr) for all r 2 R.
By definition of equilibrium flow, this condition is satisfied if and only if x is
an equilibrium flow. Therefore, the flow x minimizes Bx if and only if it is an
equilibrium flow, which satisfies the condition in the theorem.

Although an upper bound has been found for POA, this depends on the
costs being the same for every equilibrium along every edge. Thus, another
upper bound to the POA in general multicommodity flow networks will be
considered.

Definition 8 (Pigou Bound [10]). Let C by a set of cost functions. The Pigou
Bound ↵(C) is given as

↵(C) = sup
c2C

sup
z,p�0

pc(p)

zc(z) + (p� z)c(p)

and by definition 0
0 = 1.

Theorem 8. Consider a known set of cost functions C and the Pigou bound
↵(C) for C . If (G,f , c) is a nonatomic instance with cost functions ci 2 C for
i 2 E then the POA of the instance is bounded above by ↵(C) [10].

Proof. Begin this proof as has been done with many of the others by assuming
an equilibrium flow x and an optimal flow x̂ for a nonatomic instance. With
cost functions in C ,

C(x0) =
mX

i=1

ci(y
0
i
)y0

i
=

mX

i=1

ci(yi)yi

✓
ci(y0i)y

0
i
+ (yi � y0

i
)c(yi) + (y0

i
� yi)c(yi)

ci(yi)yi

◆

=
mX

i=1

ci(yi)yi

✓
ci(y0i)y

0
i
+ (yi � y0

i
)ci(y0i))

ci(yi)yi

◆
+

mX

i=1

(yi � y0
i
)ci(yi)

�
1

↵(C)

mX

i=1

ci(yi)yi +
mX

i=1

(yi � y0
i
)ci(yi)

26

This inequality follows from the definition of the Pigou Bound with z = y0
i
and

p = yi. From the last theorem, the last term in the last inequality is nonegative.

C(x0) �
C(x)

↵(C)

) ↵(C) �
C(x)

Cx0)
= POA

Now what happens if more roads are added with nondecreasing, nonnegative
a�ne costs to each route in the Braess’s Paradox example? Can the POA get
worse? Calculate the Pigou Bound for c(z) = az + b for a, b � 0 [10].

↵(C) = sup
z,p�0

p(ap+ b)

z(az + b) + (p� z)(ap+ b)

Notice that the denominator is a quadratic in z, which can be minimized with
respect to z.

@(z(az + b) + (p� z)(ap+ b))

@z
= 0) z = p/2

Plugging this value for z into the expression above yields

ap+ b

(3/4)ap+ b
!

4

3
as p ! 1

Thus, the most the POA can be for nonatomic instances is far less than the
POA found in the atomic case (5/2).

4.3.2 Atomic Bounds

The main di↵erence when dealing with Atomic Bounds is that the objective
function upper bound theorem cannot be used because costs are not the same
for any equilibrium flow. The bound � only works for the equilibrium flow that
minimizes the objective function �. This bound may be more useful in bounding
the POS. In nonatomic instance POS and POA are the same, but in atomic
instances they are usually di↵erent. Thus, to bound POS in the atomic case,
the bounding technique given in Theorem 7 will be used.

The focus here will be on cost functions that are nondecreasing, nonnegative,
and a�ne functions. Recall that in an atomic instance, when a player (or
commodity) j changes routes, then the flow along the route that he/she was on
becomes zero and the route that he/she switches to gets all the flow fj .

Theorem 9. Let (G,f , c) be an atomic instance where every cost function is
a�ne ci(z) = az + b, with a, b � 0. Let x be the equilibrium flow and x̂ be the
optimal flow. Let player j use route r in x and r0 in x̂ for r, r0 2 Rj. Then,

X

i2r

(aiyi + bi) 
X

i2r0

(ai(yi + fj) + bi) [10]. (16)

27

Proof. The proof follows immediately from the definition of atomic equilibrium
flows where the flow changes from x to x̂ by amount fj along routes that were
changed.

cr(x)  cr0(x̂))
X

i2r

(aiyi + bi) 
X

i2r0

(ai(yi + fj) + bi)

This gives a way to relate the equilibrium flow with the optimal flow.

Theorem 10. Using the same notation and assumptions as in the previous
theorem,

C(x)  C(x0) +
mX

i=1

aiyiy
0
i
[10]. (17)

Proof.

C(x) =
X

r2R

cr(xr)xr =
nX

j=1

X

r2Rj

cr(xr)xr =
nX

j=1

X

r2Rj

xr

X

i2r

ci(yi)

Recall that in the atomic case, the flow sent down any route is fj and zero along
any other route for player j.

=
nX

j=1

fj
X

i2r:r2Rj

ci(yi) =
nX

j=1

fj
X

i2r:r2Rj

(aiyi + bi)



nX

j=1

fj

0

@
X

i2r0:r02Rj

ai(yi + fj) + bi

1

A

This last inequality follows from the last theorem where all edges in the new
route r0 can be summed over with the new flow fj added. Notice that the
flow along a route fj is no more than summing every edge’s flow on the route
(because other routes may be sharing edges).



nX

j=1

fj

0

@
X

i2r0:r02Rj

ai(yi + y0
i
) + bi

1

A =
mX

i=1

0

@(ai(yi + y0
i
) + bi)

X

j:i2r0:r02Rj

fj

1

A

=
mX

i=1

((ai(yi + y0
i
) + bi)y

0
i
) =

mX

i=1

y0
i
(aiy

0
i
+ bi) +

mX

i=1

aiyiy
0
i
= C(x0) +

mX

i=1

aiyiy
0
i

With these results, the maximum value that the POA can take in atomic
instances can be calculated. In order to prove the following theorem, recall the
well known Cauchy-Schwarz inequality.

X

u

quzu

!2



X

u

q2
u

X

v

z2
v

(18)

28

Theorem 11. With an atomic instance (G,f , c) and a�ne cost functions, the
POA is at most (3 +

p
5)/2 [10].

Proof. Once again, let x denote the equilibrium flow and x̂ be the optimal flow
for the atomic instance. Let the a�ne cost function be given as ci(z) = aiz+ bi
for ai, bi � 0. Apply the Cauchy-Schwarz inequality to the vectors (

p
aiyi, i 2 E)

and (
p
aiy0i, i 2 E) to put a bound on the last term in (17).

mX

i=1

aiyiy
0
i


vuut
mX

i=1

aiy2i

mX

k=1

aky0k
2


p
C(x)

p
C(x̂)

Where the last inequality follows because adding positive bi to every term in-
creases it. Hence, from (17)

C(x)  C(x0) +
p

C(x)
p
C(x̂))

C(x)

C(x̂)
 1 +

s
C(x)

C(x̂)

Solving the equation z � 1 
p
z, the quadratic z2 � 3z + 1  0 can be formed.

Solve for z which is the same as POA

POA =
C(x)

C(x̂)


3 +
p
5

2
⇡ 2.618

5 Conclusion

This paper has shown some of the major problems and results in Algorithmic
Game Theory: assigning the conceptual problem of finding equilibria to a com-
plexity class, demonstrating and designing algorithms that may mimic players
in a game, and quantifying how allowing players to act selfishly may be worse
than the optimal behavior. The class of PPAD was defined and the parity
argument was given. The problem of Nash equilibria turned out to be equiv-
alent to the problem of finding the end node in an exponentially large graph.
Some basic algorithms were shown to see how a program may model human
behavior. With some already well known algorithms from optimization theory,
it was demonstrated that these could be placed in a Game Theoretical context.
Pigou’s example and Braess’s Paradox were introduced to show how anarchy in
routing games can lead to everyone su↵ering. Bounds were then placed on this
anarchy in nonatomic and atomic cases.

It was shown above that the reason the optimal and the equilibrium flows
in a routing problem were not the same was because they came from di↵erent
objective functions. The exact objective function introduced a new term that
could be thought of as the toll to players imposed by some external player.
When this is taken into account, every player can benefit. This can be seen in

29

real life situations where everyone wants to visit a certain place and because
everyone acts selfishly, there is a large bottlenecking at the destination and
people become frustrated. With an overseer that directs the tra�c in di↵erent
directions, everyone would benefit because the flow would be reduced along a
single route. This notion of social welfare versus selfish behavior can also be
generalized to auctions. Consider the second price auction where the bidder
is incentivized to bid truthfully. Thus the player acting selfishly and bidding
his/her truthful bid coincides with the social good that everyone tells the truth
and the highest bid wins. Hence the optimal and the NE are the same in this
case.

Current topics being addressed in AGT include trying to find NE exactly
[9]. Classical algorithms require to look for a solution in a finite space and this
may not have the exact NE of the game. Rather than limiting the solution
space, the theory of computability should be extended. Thus the smallest ex-
tension of computation would be desired that would make finding NE su�cient
[9]. The proof outline used to prove that NASH is the same as the problem
of END-OF-LINE involves showing NASH is equivalent to finding a Brouwer
fixed point, then discretizing to find fixed points on a grid and showing that
small perturbations around a point that sum to zero implies that a fixed point
is near. Because this approximate for the fixed point can be arbitrarily small, in
two player games, finding this “✏-approximate NE” is the same as finding a real
NE. However, in more than two player games, this approximate does not nec-
essarily imply a NE. Hence, the research on finding NE exactly in multiplayer
games is becoming ever more important.

AGT has also developed some interest from the social sciences. The under-
lying assumption to all of game theory is that the players are rational. However,
it is typical for people to act irrationally, but how can this be modeled? This
has brought up the idea of Bounded Rationality where perhaps people do not
act rationally because they are not aware of the rational choice [5]. Perhaps
the ignorant person does the most rational behavior in a proper subset of all
his/her choices. Knowing this, learning algorithms could limit what is known
to the player and the player would pick the best strategy from that set.

AGT has provided a fruitful area of research that breaches into economics,
computer science, and mathematics. It will continue to grow in theories and
results because the applications are so important in growing markets. The inter-
net and computers are only becoming faster and more ubiquitous. Algorithms
will become more sophisticated and come closer to finding ways to simulate,
or perhaps emulate, human interaction. This subject truly aims to breach the
reality and science fiction barrier.

30

References

[1] P. Auer. The non-stochastic multi-armed bandit problem. Annual Sympo-
sium on Foundations of Computer Science, 36(1):322–331, 1995.

[2] I. Avramopoulos, J. Rexford, and R. Schapire. From optimization to re-
gret minimization and back again. Proceedings of the Third Conference on
Tackling Computer Systems Problems with Machine Learning Techniques,
2008.

[3] A. Blum and Y. Mansour. Learning, regret minimization, and equilibria.
In N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editors, Al-
gorithmic Game Theory, pages 79–101. Cambridge University Press, 2007.

[4] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of
computing a nash equilibrium. Journal of Computer and System Sciences,
2008.

[5] B. D. Jones. Bounded rationality. Annual Review Political Science, 2:297–
331, 1995.

[6] F. Kelly. Stochastic networks part iii course, 2011.

[7] C. H. Papadimitriou. On the complexity of the parity argument and other
ine�cient proofs of existence. Journal of Computer and System Sciences,
48(3):498–532, 1994.

[8] C.H. Papadimitriou. The complexity of finding nash equilibria. In N. Nisan,
T. Roughgarden, E. Tardos, and V. V. Vazirani, editors, Algorithmic Game
Theory, pages 29–51. Cambridge University Press, 2007.

[9] A. Pauly. How incomputable is finding nash equilibria. Journal of Universal
Computer Science, 16(18):2686–2710, 2010.

[10] T. Roughgarden. Routing games. In N. Nisan, T. Roughgarden, E. Tardos,
and V. V. Vazirani, editors, Algorithmic Game Theory, pages 461–486.
Cambridge University Press, 2007.

[11] T. Roughgarden and E. Tardos. Introduction to the ine�ciency of equilib-
ria. In N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editors,
Algorithmic Game Theory, pages 443–459. Cambridge University Press,
2007.

[12] A. G. Thomason. How incomputable is finding nash equilibria. Annals of
Discrete Mathematics, 3:259–268, 1978.

31

