Asymptotically Truthful Equilibrium Selection in Large Congestion Games

Ryan Rogers - Penn
Aaron Roth - Penn

June 12, 2014
Related Work

• **Large Games**
 - Roberts and Postlewaite 1976
 - Bodoh-Creed 2013
 - Azevedo and Budish 2011

• **Incorporating a Mediator**
 - Monderer and Tennenholtz 2003, 2009
 - Ashlagi et al 2009

• **Work most closely related to ours**
 - Kearns et al 2014.
Routing Game

\[\zeta_e(y) \]
Routing Game

- A game \mathcal{G} is defined by
 - A set of n players
 - A set of types $\mathcal{U} \mapsto$ source destination pair $s_i \in \mathcal{U}$.
 - A set of actions $A \mapsto$ routes for each source destination pair.
 - A cost function $c : \mathcal{U} \times A^n \to \mathbb{R}$

$$c(s_i, a) = \sum_{e \in a_i} \ell_e(y_e(a))$$
Routing Game

- A game G is defined by
 - A set of n players
 - A set of types $\mathcal{U} \Rightarrow \textbf{source destination}$ pair $s_i \in \mathcal{U}$.
 - A set of actions $A \Rightarrow \textbf{routes}$ for each source destination pair.
 - A cost function $c : \mathcal{U} \times A^n \rightarrow \mathbb{R}$

 $$c(s_i, a) = \sum_{e \in a_i} l_e(y_e(a))$$

- Players may not know each others type.
Routing Game

- A game \(G \) is defined by
 - A set of \(n \) players
 - A set of types \(\mathcal{U} \) \(\Rightarrow \) source destination pair \(s_i \in \mathcal{U} \).
 - A set of actions \(A \) \(\Rightarrow \) routes for each source destination pair.
 - A cost function \(c : \mathcal{U} \times A^n \rightarrow \mathbb{R} \)

\[
c(s_i, a) = \sum_{e \in a_i} l_e(y_e(a))
\]

- Players may not know each others type.
 - \(n \) may be HUGE!!
A game G is defined by

- A set of n players
- A set of types $\mathcal{U} \iff$ source destination pair $s_i \in \mathcal{U}$.
- A set of actions $A \iff$ routes for each source destination pair.
- A cost function $c : \mathcal{U} \times A^n \rightarrow \mathbb{R}$

$$c(s_i, a) = \sum_{e \in a_i} \ell_e(y_e(a))$$

Players may not know each others type.

- n may be HUGE!!
- Types may be sensitive information
Routing Game

- A game G is defined by
 - A set of n players
 - A set of types $\mathcal{U} \rightarrow \text{source destination}$ pair $s_i \in \mathcal{U}$.
 - A set of actions $A \rightarrow \text{routes}$ for each source destination pair.
 - A cost function $c: \mathcal{U} \times A^n \rightarrow \mathbb{R}$
 \[c(s_i, a) = \sum_{e \in a_i} l_e(y_e(a)) \]
- Players may not know each other’s type.
 - n may be HUGE!!
 - Types may be sensitive information
- **Main Goal**: Have players play a pure strategy Nash equilibrium of the complete information game in settings of partial information.
Mediator for a Routing Game
Mediator for a Routing Game
• A mediator is an algorithm $M : (\mathcal{U} \cup \bot)^n \rightarrow (\mathcal{A} \cup \bot)^n$.
Weak Mediator

- Mediator cannot force people to use it
- Players need not follow its suggested action
- Players may lie to the mechanism if they choose to use it.
Weak Mediator

- Mediator cannot force people to use it

- Players need not follow its suggested action

- Players may lie to the mechanism if they choose to use it
Weak Mediator

- Mediator cannot force people to use it
- Players need not follow its suggested action
Weak Mediator

- Mediator cannot force people to use it
- Players need not follow its suggested action
- Players may lie to the mechanism if they choose to use it.
Augmented Game

• Define the augmented game G_M (Kearns et al 2014):
 • Action Space:

 \[A' = \{(s, f) : s \in \mathcal{U} \cup \bot, f : (A \cup \bot) \rightarrow A\} \]

 \[g_i = (s_i, f_i) \in A' \]

 • Costs for \(g' = ((s'_i, f_i))_{i=1}^n \):

 \[c_M(s_i, g') = \mathbb{E}_{a \sim M(s')} [c(s_i, f(a))] \]
Good Behavior

- Player’s should:
Good Behavior

- Player’s should:
 - Use the Mediator M
Good Behavior

- Player’s should:
 - Use the Mediator M
 - Report her true type to M
Good Behavior

- Player’s should:
 - Use the Mediator M
 - Report her true type to M
 - Follow the suggested action of $M \Rightarrow f_i = \text{identity map.}$
(Kearns et al 2014) Let $M : D^n \rightarrow O^n$. Then M satisfies ϵ-joint differential privacy if for every $s \in D^n$, for every $i \in [n]$, $s'_i \in D$ and for every $B \subseteq O^{n-1}$

$$\mathbb{P}[M(s)_{-i} \in B] \leq e^\epsilon \mathbb{P}[M(s'_i, s_{-i})_{-i} \in B]$$
If a mechanism $M : \mathbb{U} \rightarrow \mathbb{O}$ is (ϵ, δ)-differentially private and consider any function $\phi : \mathbb{U} \times \mathbb{O} \rightarrow \mathbb{A}$. Define $M' : \mathbb{U} \rightarrow \mathbb{A}$ to be $M'(s)_i = \phi(s_i, M(s))$. Then M' is (ϵ, δ)-jointly differentially private.
• If a mechanism $M : \mathcal{U}^n \rightarrow O$ is (ϵ, δ)-differentially private and consider any function $\phi : \mathcal{U} \times O \rightarrow A^n$. Define $M' : \mathcal{U}^n \rightarrow A^n$ to be

$$M'(s)_i = \phi(s_i, M(s)).$$

Then M' is (ϵ, δ)-joint differentially private.
Motivating Theorem

• Let G be any game with costs in $[0, m]$, and let M be a mediator such that

 • It is ϵ-joint differentially private
 • For any set of reported types s, it outputs an η-approximate pure strategy Nash Equilibrium.

 Then good behavior g^* is an η'-approximate ex-post equilibrium for the incomplete information game G_M where $\eta' = 2m\epsilon + \eta$.
Motivating Theorem

- Let G be any game with costs in $[0, m]$, and let M be a mediator such that
 - It is ϵ-joint differentially private
 - For any set of reported types s, it outputs an η-approximate pure strategy Nash Equilibrium.
- Then good behavior g^* is an η'-approximate ex-post equilibrium for the incomplete information game G_M where $\eta' = 2m \epsilon + \eta$.
Motivating Theorem

Let G be any game with costs in $[0, m]$, and let M be a mediator such that

- It is ϵ-joint differentially private
- For any set of reported types s, it outputs an η-approximate pure strategy Nash Equilibrium.

Then good behavior g^* is an η'-approximate ex-post equilibrium for the incomplete information game G_M where $\eta' = 2m\epsilon + \eta$.
Motivating Theorem

- Let G be any game with costs in $[0, m]$, and let M be a mediator such that
 - It is ϵ-joint differentially private
 - For any set of reported types s, it outputs an η-approximate pure strategy Nash Equilibrium.
- Then good behavior g^* is an η'-approximate ex-post equilibrium for the incomplete information game G_M where

\[\eta' = 2m\epsilon + \eta \]
Main Theorem

- There exists such a mechanism from the motivating theorem for large congestion games.
- Further, we show that good behavior g^* is an η'-approximate ex-post equilibrium for the incomplete information game G_M where

$$\eta' = \tilde{O} \left(\left(\frac{m^5}{n} \right)^{1/4} \right) \rightarrow 0 \text{ as } n \rightarrow \infty$$
Large Games
Large Games

• We assume that each player cannot significantly change the cost of another player by changing her route.

\[|\ell_e(y_e) - \ell_e(y_e + 1)| \leq \frac{1}{n} \quad \text{for } y_e \in [n] \text{ and } e \in E. \]

• The costs then satisfy for \(j \neq i \) and \(a'_j \neq a'_j \in A \)

\[|c(s_i, (a_j, a_{-j})) - c(s_i, (a'_j, a_{-j}))| \leq \frac{m}{n}. \]
How to Construct Such a Mechanism?
How to Construct Such a Mechanism?

- Simulate Best Response Dynamics
How to Construct Such a Mechanism?

- Simulate Best Response Dynamics
- Compute Best Responses privately
How to Construct Such a Mechanism?

- Simulate Best Response Dynamics
- Compute Best Responses privately
- Limit the number of times a single player can change routes.
Best Responses

- In congestion games, allowing each player to best respond given the other players routes will converge to an approximate Nash Equilibrium.
Best Responses

- In congestion games, allowing each player to best respond given the other players routes will converge to an approximate Nash Equilibrium.
- We will have an algorithm that will have each player move if she can improve her cost by more than α: α-Best Response
Best Responses

- In congestion games, allowing each player to best respond given the other players routes will converge to an approximate Nash Equilibrium.
- We will have an algorithm that will have each player move if she can improve her cost by more than α: α-Best Response
- There can be no more than $T = \frac{mn}{\alpha}$ best responses.
Best Responses

• In congestion games, allowing each player to best respond given the other players routes will converge to an approximate Nash Equilibrium.

• We will have an algorithm that will have each player move if she can improve her cost by more than α: α-Best Response

• There can be no more than $T = \frac{mn}{\alpha}$ best responses.

• We need to only maintain a count of the number of people on every edge to compute α-Best Responses for each player
Binary Mechanism

- Chan et al 2011 and Dwork et al 2010 give a way to obtain an online count of a sensitivity 1 stream \(\omega \in \{0, 1\}^T \) such that the output \(\hat{y}^t \) for any \(t = 1, 2, \ldots, T \) is
 - \(\epsilon \) differentially private
 - Has high accuracy to the exact count \(y^t \) for every \(t = 1, \ldots, T \)

\[
|\hat{y}^t - y^t| \leq \tilde{O}\left(\frac{1}{\epsilon}\right)
\]
Generalized Binary Mechanism

• Each of the m streams are k-sensitive, so we get...

• ϵ-differentially private counters

• With high probability $|\hat{y}_t - y_t| \leq \tilde{O}(km\epsilon) \quad \forall e \in E, t = 1, \ldots, T$
Each of the m streams are k-sensitive, so we get ϵ-differentially private counters. With high probability $|\hat{y}_t - y_t| \leq \tilde{O}(km\epsilon)$ for all $e \in E$, $t = 1, \ldots, T$.
Each of the m streams are k-sensitive, so we get

- ϵ differentially private counters
- With high probability

$$|\hat{y}_e^t - y_e^t| \leq \tilde{O} \left(\frac{km}{\epsilon} \right) \quad \forall e \in E, t = 1, \ldots, T$$
The Gap

- After a player i has made an α-private best response, how many times must other players move before i can move again? We will call this the gap γ.

- Due to the largeness condition, each time a player does not move, her cost can increase by at most mn and can only move once her cost has increased by $\alpha \gamma = \tilde{\Omega}(\alpha n^2 m)$.

- All the players can only make $T = \tilde{O}(mn^2 \alpha)$ (with high probability).

- A player only changes routes k times $k = \tilde{O}(m^2 \alpha^2)$.

The Gap

- After a player i has made an α-private best response, how many times must other players move before i can move again? We will call this the gap γ.

- Due to the largeness condition, each time a player does not move, her cost can increase by at most $\frac{m}{n}$ and can only move once her cost has increased by α

$$\gamma = \tilde{\Omega} \left(\frac{\alpha n}{m} \right)$$
The Gap

- After a player i has made an α-private best response, how many times must other players move before i can move again? We will call this the gap γ.

- Due to the largeness condition, each time a player does not move, her cost can increase by at most $\frac{m}{n}$ and can only move once her cost has increased by α.

$$\gamma = \tilde{\Omega} \left(\frac{\alpha n}{m} \right)$$

- All the players can only make $T = \tilde{O} \left(\frac{mn}{\alpha} \right)$ (with high probability).
The Gap

• After a player i has made an α-private best response, how many times must other players move before i can move again? We will call this the gap γ.

• Due to the largeness condition, each time a player does not move, her cost can increase by at most $\frac{m}{n}$ and can only move once her cost has increased by α

$$\gamma = \tilde{\Omega} \left(\frac{\alpha n}{m} \right)$$

• All the players can only make $T = \tilde{O} \left(\frac{mn}{\alpha} \right)$ (with high probability).

• A player only changes routes k times

$$k = \mathcal{O} \left(\frac{m^2}{\alpha^2} \right)$$
Equilibrium Analysis of our Algorithm

• With high probability, after $T = \tilde{O}\left(\frac{mn}{\alpha}\right)$ moves by all players, no player will be able to improve her private cost by more than α. If we set

$$\alpha = \tilde{\Theta}\left(\left(\frac{m^4}{n\epsilon}\right)^{1/3}\right)$$

then we know no player will be able to improve her actual cost by more than

$$\eta \leq \alpha + \text{Error from BM} = \tilde{O}\left(\left(\frac{m^4}{n\epsilon}\right)^{1/3}\right)$$
Equilibrium Analysis of our Algorithm

- Is it Joint Differentially Private?
Equilibrium Analysis of our Algorithm

- Is it Joint Differentially Private?
- Recall our motivating theorem that says *good* behavior is an η'-approximate ex-post equilibrium for G_M and we can set ϵ (which is a parameter we control) to satisfy the following

$$
\eta' = \tilde{O}\left(\left(\frac{m^5}{n}\right)^{1/4}\right) \rightarrow 0 \ \text{as} \ n \rightarrow \infty
$$
Open Questions

- Can Nash Equilibria of the complete information game be implemented as exact ex-post or Bayes Nash Equilibria of the incomplete information game?
- Does there exist a jointly differentially private algorithm for computing approximate Nash Equilibria for general large games?